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Captions of Supplementary Videos

Each video lasts 10  and is played in real time.𝑠

Supplementary Video 1: This movie, accompanying Fig. 2(a), shows that a rigid GUV maintains 
spherical shape (circular shape in these microscope images) despite vigorous motion by confined 
dense bacteria. 

Supplementary Video 2: This movie, accompanying Fig. 2(b), shows that a softer GUV can be 
deformed significantly by collective swimming of confined dense bacteria. This GUV repeatedly 
stretches, then relaxes to a circular shape.

Supplementary Video 3: This movie, accompanying Fig. 2(c), shows that a yet softer GUV also 
displays transient protrusions. After the impinging bacteria reorient, membrane elasticity causes 
circular shape to be recovered.
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Supplementary Figure 2. Representative contour of a low-tension GUV. Here,  is 𝑟(𝜙,𝑡)

extracted from the raw image in Fig. 5(a).   is the vesicle radius averaged over 𝑅0 =< 𝑟(𝜙,𝑡) >

 and .  𝜙 𝑡 𝑅0 = 10.2 𝜇𝑚

Supplementary Figure 1 Collective dynamic patterns of bacteria in GUVs. Various dynamic 
patterns appear, intermediate between the vortex and a dipolar flows in Fig. 3(a). (a) 
Quadrupolar flow where two clockwise vortices and two anticlockwise vortices coexist. (b) 
Example of a dynamic pattern in which vortices are distributed randomly. Chaotic-looking 
images such as panel b are most common in our experiments.
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Supplementary Figure 4. Kurtosis of  PDF of a low-tension GUV containing encapsulated ∆𝑟𝑗/𝑅0

bacteria, plotted against the interval time , where  is a lag time.  Kurtosis is the degree of 

𝑗 𝑗

tailedness of PDF; for a Gaussian function, kurtosis = 3 But here, kurtosis = 33 at the smallest 
lag time, which means it is most nonequilibrium on shortest time scales, then it monotonically 
decreases to kurtosis = 6, which signifies nonequilibrium dynamics regardless of .

𝑗

Supplementary Figure 3. Probability distribution function (PDF) of normalized radial 
fluctuations  of two passive GUVs, where   at  (lag time) of 0.05 s. ∆𝑟𝑗/𝑅0 ∆𝑟𝑗 = 𝑟(𝜙,𝑡 + 𝑗) ‒ 𝑟(𝜙,𝑡) 𝑗

Contrary to the active GUVs in Fig. 5(b) and (c), the distributions of these GUVs are fitted well 
by the Gaussian function, as indicated by red lines.
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Supplementary Figure 5. An image of a circular GUV and the associated intensity ( ) |𝑋𝑡(𝜙,𝑚)|2

from continuous wavelet transform (CWT) analysis using the Morse wavelet, whose 
magnitudes are identified on the color map scale on the right. The CWT intensity is 
homogeneously low, in contrast to Fig. 6(a) and (b), because  of this membrane is almost 𝑟(𝜙,𝑡)

flat. Scale bar in the top image is .10 𝜇𝑚



Fitting a  (height fluctuation) spectrum〈|ℎ̂(𝑘𝑥,𝑡)|2〉
The contour edge is projected to a Fourier series with 50 modes by

𝑟(𝜙,𝑡) = 𝑅(𝑡)(1 +
50

∑
𝑚 = 1

𝑎𝑚cos 𝑚𝜙 + 𝑏𝑚cos 𝑚𝜙),                             (1)

where  is the radius of GUV at time  and  is the mode number. Then the height fluctuations 𝑅(𝑡) 𝑡 𝑚

are defined by 

〈|ℎ̂(𝑘𝑥,𝑡)|2〉 =
𝜋𝑅3

0

2 (〈|𝑐𝑚|2〉 ‒ 〈|𝑐𝑚|〉2),                                           (2)

where  is the time-averaged radius of GUV,  is the wave vector, and the 𝑅0 = 〈𝑟(𝜙,𝑡)〉 𝑘𝑥 = 𝑚/𝑅0

Fourier coefficients are .|𝑐𝑚| = (𝑎 2
𝑚 + 𝑏 2

𝑚)1/2

According to Supplementary Video 2 and the CWT analysis in Fig. 6(a) and (b), the active 
fluctuations are primarily induced by collective bacteria motion. Therefore, we extracted the 
membrane tension ( ) and bending modulus ( ), using the Helfrich Hamiltonian to fit  𝜆 𝜅 〈|ℎ̂(𝑘𝑥,𝑡)|2〉
of high mode number. Helfrich in Fig. 6(c) is fitted by , , and , 𝜆 = 3 𝑝𝑁/𝜇𝑚 𝜅 = 30 𝑘𝐵𝑇 𝑅0 = 10 𝜇𝑚

which were also used for the active membrane.  

The Takatori-Sahu model, developed to explain the active fluctuations by a contact force of 
individual bacteria, predicts the analytic function for :〈|ℎ̂(𝑘)|2〉

〈|ℎ̂(𝑘)|2〉 =
𝑘𝐵𝑇

𝜅𝑘4 + 𝜆𝑘2
+

𝑁𝑝𝜏𝑅

𝜏𝑇 + 𝜏𝑅( 𝑎2�̅�/𝑅0

𝜅𝑘4 + 𝜆𝑘2)2𝑒 ‒ 𝑎2𝑘2
,                           (3)

where  is the tension,  is the bending modulus,  is the size of a swimming body assuming a 𝜆 𝜅 𝑎

spherical shape,  is the bacterial reorientation time,  is the time it takes the bacteria to travel 𝜏𝑅 𝜏𝑇

one side of vesicle to another,  is the number of bacteria confined to a GUV, and  is the 𝑁𝑝 �̅�

maximum pressure applied to the membrane by a bacterium.

To compare Eq. (3) with experiments, the height fluctuations of the nearly planar membrane 
are averaged over  modes. In practice, the average is done numerically by𝑘𝑦

〈|ℎ̂(𝑘𝑥,𝑡)|2〉 =
2
𝐿

𝑀

∑
𝑛 = 0

〈|ℎ̂(𝑘 = (𝑘𝑥,2𝜋𝑛/𝐿),𝑡)|2〉,                                (4)

In fits to the original Takatori-Sahu (TS) model to fit our experiment in Fig. 6(c), we use the 
parameters  and ,the half width of a bacterium. In the dense bacteria system, 𝑁𝑝 = 100 𝑎 = 0.25 𝜇𝑚

we specify parameters in the equation by reasoning as follows. First,  because dense 𝑁𝑝 = 1

bacteria move collectively like a single body. From our experiment,   0.25  (see 𝜏𝑅 𝑠
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Supplementary Fig. 6) and  is the time for a swimming group to traverse the 𝜏𝑇 ≈ 2𝑅0/𝑈0 ≈ 2 𝑠

vesicle diameter , moving at speed  in a dense environment. 2𝑅0 ≈ 20 𝜇𝑚 𝑈0 ≈ 10 𝜇𝑚/𝑠

The size of swimming group, which gives a contact force to the GUV, assumes a spherical shape. 
Therefore, we defined  based on the fluctuating contour of GUVs (see Supplementary Fig. 𝑎 ≈ 3𝜇𝑚

7). It is much larger than the half-width of a bacterium . (0.25 𝜇𝑚)

We approximated the pressure exerted on the membrane by the group of bacteria as . �̅� ≈ 𝜆/𝑎

In fact, because the flocking cluster can stretch the membrane, this may reduce the actual contact 
pressure slightly.

Experimental height fluctuations in Fig. 6(c) are fitted with different parameters:

Top panel: , , and .𝜅 = 30 𝑘𝐵𝑇 𝜆 = 3 𝑝𝑁/𝜇𝑚 𝑅0 = 10 𝜇𝑚

Middle panel: , , and .𝜅 = 40 𝑘𝐵𝑇 𝜆 = 1.5 𝑝𝑁/𝜇𝑚 𝑅0 = 11 𝜇𝑚

Bottom panel: , , and .𝜅 = 25 𝑘𝐵𝑇 𝜆 = 0.7 𝑝𝑁/𝜇𝑚 𝑅0 = 9 𝜇𝑚

 were the same with discussed values above.𝑁𝑝, 𝑎, 𝜏𝑅, 𝜏𝑇
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Supplementary Figure 7 The radial position of contour  fluctuates in time owing to 𝑟(𝜙,𝑡 = 25 𝑠)

bacteria activity. Noticing the periodic bumps with widths  , we define  as radius 6 𝜇𝑚 𝑎 ≈ 3 𝜇𝑚

of the swimming group, which is spherical for comparison to Eq. (3). 

Supplementary Figure 6 The radial position of contour  fluctuates in time owing to 𝑟(𝜙 = 90°,𝑡)

bacteria activity. Noticing that the period of stretch and relaxation is   we set  0.5 𝑠, 𝜏𝑅 ≈ 0.25 𝑠

in the comparison to Eq. (3).


