Electronic Supplementary Information for Spontaneous organization and phase separation of skyrmions in chiral active matter Zhong-Yi Li ^a, De-Qing Zhang ^a, Shao-Zhen Lin ^b, Wojciech T. Góźdź ^c, and Bo Li ^a ^a Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China ^b Aix Marseille Université, CNRS, Centre de Physique Théorique, Turing Center for Living Systems, 13009 Marseille, France ^c Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland In this Electronic Supplementary Information (ESI), we provide additional results to supplement the main text. ## **Additional results** Fig. S1. Two other structures of half Néel skyrmions. Fig. S2. (a) Polarization direction field $\bf p$, which corresponds to isolated skyrmions (α =0.02). Arrows represent the direction of polarization. (b) Velocity field $\bf v$ corresponding to (a). **Fig. S3.** (a) Polarization direction field \mathbf{p} , which corresponds to crowded skyrmions (α =0.26). Arrows represent the direction of polarization. (b) Velocity field \mathbf{v} corresponding to (a). Fig. S4. (a) Polarization direction field \mathbf{p} with the initial conditions for \mathbf{p} along the z direction (α =0.14). Arrows represent the direction of polarization. (b) Velocity field \mathbf{v} corresponding to (a). Fig. S5. (a) Polarization direction field \mathbf{p} with $100 \times 100 \times 5$ grid (α =0.14). Arrows represent the direction of polarization. (b) Vertical view corresponding to (a).