Supporting Information

N-Alkylimidazolium carboxylates as a new type of Catanionic Surface Active Ionic Liquids: Synthesis, thermotropic behavior and micellization in water

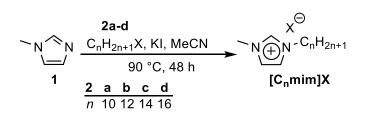
Sebastian B. Wachsmann⁺,^a Jessica Bauhof⁺,^b Aileen Rebecca Raab^a, Anna Zens,^a Thomas Sottmann,^b*^b and Sabine Laschat^b*^a

- + These authors contributed equally to the manuscript.
- a Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- *b* Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Corresponding Author: sabine.laschat@oc.uni-stuttgart.de

Present Address: Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.

Content


1.	Materials and Equipment	S2
2.	Synthesis	S3
3.	NMR spectra	S14
4.	DSC and mesophase analysis	S30
5.	Polarization microscopy studies	\$37
6.	Thermogravimetric analysis	S39
7.	Surface tension measurements	S39
8.	X-Ray data	S41
9.	References	S50

1. Materials and Equipment

All chemicals were obtained from the supplier and used without further purification. The following instruments were used for the characterization of the compounds. ¹H NMR spectra were recorded using Bruker Avance 300, Avance 400 and Avance 500 spectrometers at 300 MHz, 400 MHz and 500 MHz, respectively as well as ¹³C NMR spectra at 75 MHz, 100 MHz and 126 MHz. As a solvent, deuterated chloroform (CDCl3) was used with tetramethylsilane as a reference for the chemical shift δ in ppm (parts per million). FT-IR spectra were recorded on a Bruker Vektor 22 with a MKII Golden Gate Single Reflection Diamond ATR. Mass spectra (MS) as well as high resolution mass spectra (HRMS) were recorded by electrospray ionisation (ESI) with a Bruker MicrOTOF-Q spectrometer, and electron ionisation (EI) with a Bruker Varian MAT 711 spectrometer. An Elemental Analyzer Model 1106 from the company Carlo Erba Strumentazione was used for elemental analyses. Polarising optical microscopy measurements were realized with an Olympus BX 50 polarising microscope combined with a Linkam TP93 central controller. Differential scanning calorimetery was performed on a DSC822e from the company Mettler Toledo. Therefore, 40 µL sealed aluminium crucibles with heating and cooling rates of 5 K/min were used. The phase transition temperatures of the extrapolated onset values were determined using the software STARe 7.01 from Mettler Toledo. Thermo gravimetric analysis was performed with a STA 449C Jupiter from Netzsch with a constant heating rate of 10 K/min starting at 25 to 450 °C. X-ray diffraction was measured using Bruker AXS Nanostar C with a ceramic tube generator (1500 W) and cross-coupled Goebel mirrors that provide monochromatic Cu $K_{\alpha 1}$ radiation (1.5405) Å). The samples were melted in a glass capillary from the company *Hilgenberg GmbH* (external diameter of 0.7 mm). Diffraction patterns were measured using a Bruker HI-STAR detector. For calibration, a diffraction pattern of silver behenate at room temperature was used before each measurement. Further analysis of measured values was performed with the software SAXS (Version 4.1.51) from the company Bruker. The obtained diffraction patterns were analyzed using the software Datasqueeze (Version 2.2.8) and Origin. The water content was determined via a Karl-Fischer Titrator METTLER TOLEDO C10S with a DO308 oven. Therefore, 50 mg of the compound were heated within the device up to 120 °C and the evaporating water was titrated in a CombiCoulomat fritless solution. The surface tensions of the solutions of different concentrations were measured by a surface tensiometer (Dataphysics DCAT 9) equipped with a Wilhelmy plate. The solutions were prepared using ultrasound and an increased temperature in a volumetric flask. The solutions of the soapy ILCs were prepared in bidestilled water of the Institute for Physical Chemistry of the University of Stuttgart. For selected samples the surface tension was measured as a function of concentration. The surface-tension measurements were started with the highest concentration solution, and the subsequent concentrated solutions were prepared by adding the amount of water which was used to clean and fill the sample vessel. The vessel was cleaned with 5 mL of the solution and 15 mL were used for the measurement. The measurements were performed at 25 °C. The measurements were terminated by the *DCATS* program when the standard deviation of the last 100 measured values was less than 0.02 mN/m.

2. Synthesis

General procedure 1 (GP1): Synthesis of *N*-alkyl-*N*-methylimidazolium halides ([C_nmim]X)

Scheme 1

N-Methylimidazole **1** (8.00 g, 97.4 mmol) and the corresponding alkyl halide **2a-d** (21.6 g, 97.4 mmol) were mixed together in MeCN (200 mL). Then KI (0.01 g, 60.2 μ mol) was added as a catalyst. The mixture was stirred at 90 °C for 24 h. Subsequently the solvent was removed under reduced pressure and the alkylated product was purified via recrystallization from EtOAc (3 x 100 mL).

1-Decyl-3-methylimidazolium chloride ([C₁₀mim][Cl])

According to GP 1: N-Methylimidazole (8.00 g, 97.4 mmol), 1-bromodecane 2a (21.6 g,

13.95 (1 × CH₃), 22.47, 26.08, 28.83, 29.05, 29.20, 29.27, 30.19, 31.65 (8 × CH₂), 36.58 (1 × NCH₃), 49.94 (1 × NCH₂), 122.06, 123.82 (2 x NCHC), 136.91 (1 × NCHN). The spectroscopic data were in accordance with ref¹.

1-Dodecyl-3-methylimidazolium bromide ([C12mim]Br)

According to GP 1: N-Methylimidazole (8.00 g, 97.4 mmol), 1-bromododecane 2b (29.1 g,

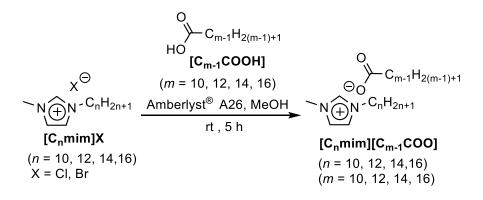
 $\begin{array}{l} & \ensuremath{\square} \\ & \ensuremath{\square}$

CDCl₃) δ 14.07 (1 × CH₃), 22.62, 26.23, 28.97, 29.27, 29.33, 29.45, 29.53, 30.29, 31.84 (10 × CH₂), 36.58 (1 × NCH₃), 50.06 (1 × NCH₂), 121.70, 123.56 (2 x NCHC), 137.91 (1 × NCHN). The spectroscopic data were in accordance with ref².

1-Tetradecyl-3-methylimidazolium bromide ([C14mim]Br)

According to GP 1: *N*-Methylimidazole (6.00 g, 73.1 mmol), 1-bromotetradecane **2c** (20.3 g, $\beta_{\text{Br}}^{\ominus}$ 73.1 mmol), KI (0.01 g, 60.2 µmol), MeCN (200 mL); reaction time: 24 h. $\gamma_{\text{H}}^{\ominus}$ White solid (93 %, 24.53 g, 68.25 mmol); ¹H NMR (300 MHz, CDCl₃): $\delta =$ 0.83–0.93 (t, *J* = 7.1 Hz, 3H), 1.22–1.33 (m, 27H), 1.90 (dt, *J* = 7.1, *J* = 7.4 Hz, 2H), 4.14 (s, 3H), 4.27–4.38 (t, *J* = 7.4 Hz, 2H), 7.37 (t, *J* = 1.8 Hz, 1H), 7.51 (t, *J* = 1.8 Hz, 1H), 10.41 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 14.10 (1 × CH₃), 22.66, 26.25, 28.98, 29.33, 29.36, 29.48, 29.57, 29.62, 29.65, 30.30, 31.89, 36.78 (12 × NCH₃), 50.20 (1 × NCH₂), 121.72, 123.46 (2 x NCHC), 137.67 (1 × NCHN). The spectroscopic data were in accordance with ref³.

1-Hexadecyl-3-methylimidazolium bromide ([C₁₆mim]Br)


According to GP 1: N-Methylimidazole (2.00 g, 24.4 mmol), 1-bromohexadecane 2d (7.44 g,

24.4 mol), KI (0.01 g, 60.2 µmol), MeCN (200 mL); reaction time: 48 h. White solid (79 %, 7.50 g, 19.4 mmol); ¹H NMR (300 MHz, CDCl₃): δ = 0.83–0.93 (t, *J* = 7.1 Hz, 3H), 1.25-1.34 (m, 26H), 1.92 (dt, *J* = 7.1, *J* = 7.5 Hz, 2H), 4.14 (s, 3H), 4.32 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 1.8 Hz, 1H), 7.43 (t, *J* = 1.8 Hz, 1H), 10.53 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃)

δ 14.11 (1 × CH₃), 22.68, 26.26, 28.98, 29.35, 29.49, 29.58, 29.64, 29.68, 30.29, 31.91 (14 × NCH₃), 36.79 (1 × CH₃), 50.24 (1 × NCH₂), 121.58, 123.26 (2 x NCHC), 137.94 (1 × NCHN). The spectroscopic data were in accordance with ref⁴.

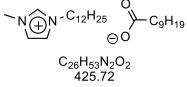
General procedure 2 (GP2): Synthesis of 1-Alkyl-3-methylimidazolium carboxylates ([C_nmim][C_{m-1}COO])

Scheme 2

A column was filled with ion exchange resin Amberlyst[®] A26 (20 mL). This was loaded with a carboxylic acid [$C_{m-1}COOH$] (m = 10, 12, 14, 16) (5 eq.) dissolved in MeOH (50 mL) with a dripping rate of 2 mL /min. Afterwards the column was thoroughly washed with water and MeOH to get rid of excess acid. Then, the 1-alkyl-3-methylimidazolium halide [C_nmin]X (n = 10, 12, 14, 16) (1 eq.) was dissolved in MeOH (100 mL) and the column was unloaded with a dripping rate of 0.5 mL /min. The solvent was evaporated under reduced pressure and the crude product recrystallized from acetone.

1-Decyl-3-methylimidazolium decanoate ([C₁₀mim][C₁₀COO])

Synthesis according to GP 2. From 1-decyl-3-methylimidazolium chloride [C₁₀mim]Cl,


 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

4.09 (s, 3H), 4.30 (t, J = 7.4 Hz, 2H), 7.08 (s, 2H), 11.88 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 14.23 (2 × CH₃), 22.81, 26.38, 27.36, 29.14, 29.47, 29.50, 29.62, 29.71, 29.76, 29.79, 29.81, 29.87, 30.23, 30.41, 32.03, 32.05 (15 × CH₂), 36.40 (1 × CH₃), 39.53 (1 × CH₂), 50.00 (1 × NCH₂CH), 120.77, 122.28 (2 x NCHC), 181.21 (1 × COO). The ¹³C-peak at δ = 140 ppm for the imidazolium carbon NCHN could not be observed due to the poor signal to noise ratio; FT-IR: $\tilde{\nu}$ = 3382.34 (m), 3141.07 (m), 2955.80 (s), 2919.95 (vs), 2871.93 (m), 2849.65 (s), 2221.58 (w), 1560.74 (vs), 1465.33 (s), 1394.04 (s), 1334.40 (w), 1303.90 (w), 1270.23 (w), 1235.07 (w), 11689.64 (m), 1104.36 (w), 907.13 (m), 734.63 (vs), 663.85 (m), 628.20 (m), 506.77 (w), 456.46 (w) cm⁻¹; MS (ESI): Positive: m/z = 223.22 [M⁺]; HRMS (ESI): m/z for

 $C_{14}H_{27}N_2^+$ calc.: 223.2169 [M⁺], found: 223.2169; MS (ESI): Negative: m/z = 171.14 [M⁻]; HRMS (ESI): *m/z* for C₁₀H₁₉O₂- calc.: 171.1391 [M⁻], found: 171.1398; DSC: Cr 61 °C [74.2 kJ mol⁻¹] SmA 108 °C [2.9 kJ mol⁻¹] I; Elemental analysis: calc.: C 73.04, H 11.74, N 7.10; found C 68.63, H 11.70, N 6.64 \cdot 1.5; Water content: 0.33 \pm 0.11 wt%.

1-Dodecyl-3-methylimidazolium decanoate ([C12mim][C9COO])

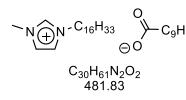
Synthesis according to GP 2. From 1-dodecyl-3-methylimidazolium bromide [C12mim]Br,

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & &$ 6H), 1.16–1.43 (m, 30H), 1.62–1.71 (dt, J = 7.8 Hz, 2H), 1.87 (dt, *J* = 7.1 Hz, *J* = 7.4 Hz, 2H), 2.21–2.28 (t, *J* = 7.8 Hz, 2H),

4.09 (s, 3H), 4.30 (t, J = 7.4 Hz, 2H), 6.98–7.15 (m, 2H), 11.83 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 14.22, 14.24(2 × *C*H₃), 22.79, 22.82, 26.38, 27.36, 29.14, 29.44, 29.49, 29.52, 29.62, 29.71, 29.81, 29.87, 30.23, 30.41, 32.02, 32.08 (17 × CH₂), 36.41 (1 × CH₃), 39.53 (1 × CH₂), 50.01 (1 × NCH₂CH), 120.78, 122.28 (2 x NCHC), , 181.21 (1 × COO). The 13 C-peak at $\delta = 140$ ppm for the imidazolium carbon NCHN could not be observed due to the poor signal to noise ratio; FT-IR: $\tilde{\nu} = 3140.15$ (m), 3033.92 (m9, 2955.46 (m), 2918.69 (vs), 2849.994 (s), 2199.75 (w), 1558.62 (vs), 1466.88 (m), 1397.10 (m), 1336.36 8 (w), 1304.05 (w), 1171.43 (m) 1105.19 8w), 609.38 (s), 727.66 (vs), 641.78 (m), 627.39 (m) cm⁻¹; MS (ESI): Positive: m/z =251.25 [M⁺]; HRMS (ESI): *m/z* for C₁₆H₃₁N₂⁺ calc.: 252.2482 [M⁺], found: 251.2483; MS (ESI): Negative: $m/z = 171.14 \text{ [M}^{-}\text{]}$; HRMS (ESI): m/z for $C_{10}H_{19}O_2^{-}$ calc.: 171.1391 [M], found: 171.1391; DSC: Cr 43 °C [63.4 kJ mol⁻¹] SmA 122 °C [3.5 kJ mol⁻¹] I; Water content: 1.11 ± 0.11 wt%.

1-Tetradecyl-3-methylimidazolium decanoate ([C14mim][C9COO])

Synthesis according to GP 2. From 1-tetradecyl - 3-methylimidazolium bromide [C14mim]Br,

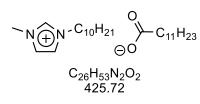

C₂₈H₅₇N₂O₂ 453.78

decanoic acid [C₉COOH], MeOH (50 mL); white solid (79 %, $\sim N_{\oplus}N^{-C_{14}H_{29}} \overset{O}{\underset{\Theta}{\longrightarrow}} C_{9}H_{19}$ 1.97 g, 4.38 mmol); ¹H NMR (500 MHz, CDCl₃): $\delta = 0.84-$ 0.91 (m, 6H), 1.18–1.39 (m, 34H), 1.66 (dt, *J* = 7.8f Hz, 2H), 1.83–1.90 (dt, J = 7.1 Hz, J = 7.4 Hz, 2H), 2.21–2.28 (t,

J = 7.8 Hz, 2H), 4.09 (s, 3H), 4.30 (t, J = 7.4 Hz, 2H), 7.07 (s, 2H), 11.87 (s, 1H) ppm.; ¹³C NMR (101 MHz, CDCl₃) δ 14.23 (2 × CH₃), 22.79, 22.81, 26.38, 27.33, 29.14, 29.46, 29.49, 29.52, 29.62, 29.71, 29.75, 29.79, 29.80, 29.86, 30.21, 30.41, 32.03, 32.07 (19 × CH₂), 36.41 $(1 \times CH_3)$, 39.46 $(1 \times CH_2)$, 50.01 $(1 \times NCH_2CH)$, 120.80, 122.32 $(2 \times NCHC)$, 181.14 $(1 \times CH_2)$ COO). The ¹³C-peak at $\delta = 140$ ppm for the imidazolium carbon NCHN could not be observed due to the poor signal to noise ratio; FT-IR: $\tilde{\nu} = 3144.73$ (w), 2922.34 (s), 2852.80 (m), 2211.16 (w), 1557.35 (s), 1466.19 (m), 1392.08 (m), 1305.66 (w), 1170.37 (w), 907.15 (s), 728.98 (vs), 641.05 (m), 625.53 (m) cm⁻¹; MS (ESI): Positive: m/z = 279.28 [M⁺]; HRMS (ESI): m/z for $C_{18}H_{35}N_2^+$ calc.: 279.2795 [M⁺], found: 279.2796; MS (ESI): Negative: m/z = 171.14 [M⁻]; HRMS (ESI): *m/z* for C10H₁₉O₂⁻ calc.: 171.1391 [M⁻], found: 171.1399; DSC: Cr 47 °C [77.1 kJ mol⁻¹] SmA 126 °C [3.2 kJ mol⁻¹] I.; Water content: 0.56 ± 0.11 wt%.

1-Hexadecyl-3-methylimidazolium decanoate ([C₁₆mim][C₉COO])

Synthesis according to GP 2. From 1-hexadecyl-3-methylimidazolium bromide [C₁₆mim]Br,



decanoic acid [C₉COOH], MeOH (50 mL); white solid (92 %, 6H), 1.19–1.39 (m, 38H), 1.62–1.70 (dt, J=7.8 Hz, 2H), 1.87 (dt, *J* = 7.1 Hz, *J* = 7.4 Hz, 2H), 2.20–2.30 (t, *J*=7.8 Hz, 2H),

4.09 (s, 3H), 4.30 (t, J = 7.4 Hz, 2H), 7.08 (s, 2H), 11.80 (s, 1H) ppm.; ¹³C NMR (75 MHz, CDCl₃) δ 14.24 (2 × CH₃), 22.81, 26.38, 27.35, 29.15, 29.48, 29.50, 29.53, 29.63, 29.72, 29.77, 29.81, 29.87, 30.22, 30.41, 32.04, 32.08 (21 × CH₂), 36.41 (1 × CH₃), 39.52 (1 × CH₂), 50.01 $(1 \times \text{NCH}_2\text{CH})$, 120.77, 122.27 (2 x NCHC), 181.24 (1 × COO). The ¹³C-peak at $\delta = 140$ ppm for the imidazolium carbon NCHN could not be observed due to the poor signal to noise ratio; FT-IR: $\tilde{\nu} = 2922.16$ (s), 2851.59 (m), 2206.85 (w), 1558.22 (s), 1461.71 (m), 1309.59 (m), 1304.97 (w), 1168.59 (w), 907.07 (s), 727.93 (vs), 639.21 (m) cm⁻¹; MS (ESI): Positive: m/z =307.31 [M⁺]; HRMS (ESI): *m*/*z* for C₂₀H₃₉N₂⁺ calc.: 307.3108 [M⁺], found: 307.3108; MS (ESI): Negative: $m/z = 171.14 \text{ [M}^{-}\text{]}$; HRMS (ESI): m/z for $C_{10}H_{19}O_2^{-}$ calc.: 171.1391 [M], found: 171.1392; DSC: Cr 55 °C [90.1 kJ mol⁻¹] SmA 146 °C [3.6 kJ mol⁻¹] I.; Water content: 0.59 ± 0.11 wt%.

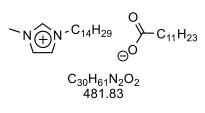
1-Decyl-3-methylimidazolium dodecanoate ([C₁₀mim][C₁₁COO])

Synthesis according to GP 2. From 1-decyl-3-methylimidazolium chloride [C₁₀mim]Cl,

dodecanoic acid [C11COOH], MeOH (50 mL); white solid $\begin{array}{c} & 0 \\ & 0 \\ & 0 \\ & 0 \end{array} \begin{array}{c} & 0 \end{array} \begin{array}{c} & 0 \\ & 0 \end{array} \begin{array}{c} & 0 \\ & 0 \end{array} \begin{array}{c} & 0 \end{array} \begin{array}{c} & 0 \\ & 0 \end{array} \begin{array}{c} & 0 \end{array} \end{array}{c} \end{array} \begin{array}{c} & 0 \end{array} \begin{array}{c} & 0 \end{array} \begin{array}{c} & 0 \end{array} \end{array}{c} \end{array}{c} & 0 \end{array} \begin{array}{c} & 0 \end{array} \end{array}{c} \end{array}{c} & 0 \end{array} \begin{array}{c} & 0 \end{array} \end{array}{c} & 0 \end{array} \begin{array}{c} & 0 \end{array} \end{array}{c} & 0 \end{array} \begin{array}{c} & 0 \end{array} \end{array}{c} & 0 \end{array} \end{array}{c} \end{array}{c} & 0 \end{array} \begin{array}{c} & 0 \end{array} \end{array}{c} \end{array}{c} & 0 \end{array} \end{array}{c} \end{array}{c} & 0 \end{array} \end{array}{c} \\{c} & 0 \end{array} \end{array}{c} \\{c} & 0 \end{array} \end{array}{c} \\{c} & 0 \end{array} \end{array}{c} & 0 \end{array} \end{array}{c} \end{array}{c} & 0 \end{array} \end{array}{c} & 0 \end{array} \end{array}{c} & 0 \end{array} \end{array}{c} & 0 \end{array} \end{array}{c} \\{c} & 0 \end{array} \end{array}{c} \\{c} & 0 \end{array} \end{array}{c} \\{c} & 0 \end{array} \end{array}{c} \end{array}{c} \\{c} & 0 \end{array} \end{array}{c} \end{array}{c} \\{c} & 0 \end{array} \end{array}{c} \end{array}$ 0.88 (m, 6H), 1.28 (m, 30H), 1.66 (dt, *J* = 7.8 Hz, 2H), 1.87 (dt, *J* = 7.1 Hz, *J* = 7.4 Hz, 2H), 2.21–2.27 (t, *J* = 7.8 Hz, 2H), 4.08

(s, 3H), 4.28–4.33 (t, J = 7.4 Hz, 2H), 7.06 (s, 2H), 11.84 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 14.21, 14.24 (2 × CH₃), 22.77, 22.81, 26.38, 27.36, 29.14, 29.36, 29.49, 29.57, 29.81, 29.87, 30.23, 30.41, 31.96, 32.06 $(17 \times CH_2)$, 36.41 $(1 \times CH_3)$, 39.53 $(1 \times CH_2)$, 50.01 $(1 \times CH_2)$ NCH₂CH), 120.78, 122.28 (2 x NCHC), 181.24 (1 × COO), The ¹³C-peak at δ = 140 ppm for the imidazolium carbon NCHN could not be observed due to the poor signal to noise ratio.; FT-IR: $\tilde{\nu} = 2923.99$ (m), 2853.87 (m), 2212.85 (w), 1556.48 (m), 1466.02 (w), 1392.39 (m), 1170.97 (w), 906.45 (s), 726.77 (vs), 641.42 (m), 625.05 (m) cm⁻¹; MS (ESI): Positive: m/z =223.22 [M⁺]; HRMS (ESI): m/z for C₁₄H₂₇N₂⁺ calc.: 223.2169 [M⁺], found: 223.2168; MS (ESI): Negative: m/z = 199.17 [M⁻]; HRMS (ESI): m/z for C₁₄H₂₃O₂⁻ calc.: 199.1704 [M⁻], found: 199.1701; DSC: Cr 42 °C [68.0 kJ mol⁻¹] SmA 144 °C [3.7 kJ mol⁻¹] I.; Water content: 1.48 ± 0.11 wt%.

1-Dodecyl-3-methylimidazolium dodecanoate ([C₁₂mim][C₁₁COO])

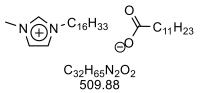

Synthesis according to GP 2. From 1-dodecyl-3-methylimidazolium bromide [C12mim]Br,

dodecanoic acid [C11COOH], MeOH (50 mL); white solid $_{23}$ (95 %, 2.56 g, 5.68 mmol); ¹H NMR (500 MHz, CDCl₃): $\delta =$ 0.84–0.91 (m, 6H), 1.16–1.39 (m, 34H), 1.63–1.71 (dt, *J* = 7.8 Hz, 2H), 1.84–1.90 (dt, J = 7.1 Hz, J = 7.4 Hz, 2H), 2.21–2.28

(t, J = 7.8 Hz, 2H), 4.09 (s, 2H), 4.30 (t, J = 7.4 Hz, 2H), 7.06 (s, 2H), 11.87 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 14.22 (2 × CH₃), 22.79, 22.81, 26.38, 27.15, 29.14, 29.45, 29.50, 29.62, 29.71, 29.81, 29.84, 29.87, 30.15, 30.42, 32.02, 32.06 (19 × CH₂), 36.43 (1 × CH₃), 39.04 (1 × CH₂), 50.03 (1 × NCH₂CH), 120.81, 122.30 (2 x NCHC), 141.73 (1 × NCHN), 180.87 (1 \times COO); FT-IR: $\tilde{\nu} = 2923.57$ (m), 2853.17 (m), 2221.68 (w), 1557.69 (m), 1466.19 (w), 1391.97 (w), 1171.59 (w), 905.93 (s), 726.35 (vs), 642.12 (m) cm⁻¹; MS (ESI): Positive: m/z =251.25 [M⁺]; HRMS (ESI): *m/z* for C₁₆H₃₁N₂⁺ calc.: 251.2482 [M⁺], found: 251.2482; MS (ESI): Negative: $m/z = 199.17 \text{ [M}^{-}\text{]}$; HRMS (ESI): m/z for $C_{12}H_{23}O_2^{-}$ calc.: 199.1693 [M], found: 199.1694; DSC: Cr 48 °C [79.6 kJ mol⁻¹] SmA 118 °C [3.0 kJ mol⁻¹] I; Water content: 1.95 ± 0.11 wt%.

1-Tetradecyl-3-methylimidazolium dodecanoate ([C₁₄mim][C₁₁COO])

Synthesis according to GP 2. From 1-tetradecyl-3-methylimidazolium bromide [C₁₄mim]Br,

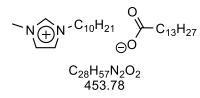


dodecanoic acid [C11COOH], MeOH (50 mL); white solid 1.87 (dt, *J* = 7.1 Hz, *J* = 7.4 Hz, 2H), 2.21–2.27 (t, *J* = 7.8 Hz, 2H), 4.09 (s, 3H), 4.30 (t, J = 7.4 Hz, 2H), 7.03–7.08 (m, 2H),

11.89 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 14.10 (2 × CH₃), 22.68, 26.25, 27.23, 29.01, 29.34, 29.37, 29.49, 29.58, 29.63, 29.66, 29.68, 29.74, 30.10, 30.28, 31.90, 31.92 ($21 \times CH_2$), 36.27 (1 × CH₃), 39.40 (1 × CH₂), 49.87 (1 × NCH₂CH), 120.64, 122.15 (2 x NCHC), 181.08 $(1 \times COO)$. The ¹³C-peak at $\delta = 140$ ppm for the imidazolium carbon NCHN could not be observed due to the poor signal to noise ratio.; FT-IR: $\tilde{\nu} = 2919.53$ (m), 2850.69 (m), 2194.98 (w), 1560.00 (m), 1466.43 (w), 1400.79 (w), 1169.83 (w), 906.35 (s), 724.68 (vs), 641.36 (m), 625.96 (m) cm⁻¹; MS (ESI): Positive: m/z = 279.28 [M⁺]; HRMS (ESI): m/z for C₁₈H₃₅N₂⁺ calc.: 279.2795 [M⁺], found: 279.2795; MS (ESI): Negative: m/z = 199.17 [M⁻]; HRMS (ESI): m/zfor C12H₂₃O₂⁻ calc.: 199.1704 [M⁻], found: 199.1709; DSC: Cr 57 °C [78.5 kJ mol⁻¹] SmA 139 °C [2.7 kJ mol⁻¹] I.; Water content: 0.66 ± 0.11 wt%.

1-Hexadecyl-3-methylimidazolium dodecanoate ([C₁₆mim][C₁₁COO])

Synthesis according to GP 2. From 1-hexadecyl-3-methylimidazolium bromide [C16mim]Br,



dodecanoic acid [C11COOH], MeOH (50 mL); white solid $\begin{array}{c} & & \\ & &$ 2H), 1.87 (dt, J = 7.1 Hz, J = 7.4 Hz, 2H), 2.20–2.27 (t,

J = 7.8 Hz, 2H), 4.08 (s, 3H), 4.30 (t, J = 7.4 Hz, 2H), 7.08 (s, 2H), 11.79 (s, 1H) ppm.; ¹³C NMR (101 MHz, CDCl₃) δ 14.19 (2 × CH₃), 22.77, 26.35, 27.28, 29.11, 29.44, 29.47, 29.60, 29.64, 29.69, 29.74, 29.78, 29.82, 29.84, 30.19, 30.38, 32.01, 32.02 (23 × CH₃), 36.38 (1 × CH₃), 39.37 (1 × CH₂), 49.97 (1 × NCH₂CH), 120.85, 120.88, 122.41 (2 x NCHC), 141.51 (1 × NCHN), 180.96 (1 × COO); FT-IR: $\tilde{\nu}$ = 3373.84 (w), 3139.23 (w), 3030.54 (w), 2954.60 (m), 2915.28 (vs), 2849.12 (s), 1678.43 (w), 1557.17 (vs), 1467.27 (m), 1399.95 (s), 1335,79 (w), 1309.09 (w), 1281.34 (w),1252.77 (w), 907.78 (m), 776.23 (m), 734.27 (S), 664.98 (m), 628.51 (m), 519.24 (w), 466.41 (w) cm⁻¹; MS (ESI): Positive: m/z = 307.31 [M⁺]; HRMS (ESI): m/zfor C₂₀H₃₉N₂⁺ calc.: 307.3108 [M⁺], found: 307.3112; MS (ESI): Negative: m/z = 199.17 [M⁻]; HRMS (ESI): *m/z* for C12H₂₃O₂⁻ calc.: 199.1704 [M⁻], found: 199.1692; DSC: Cr 55 °C [76.6 kJ mol-1] SmA 126 °C [2.3 kJ mol-1] I.; Water content: 1.60 ± 0.11 wt%.

1-Decyl-3-methylimidazolium tetradecanoate ([C₁₀mim][C₁₃COO])

Synthesis according to GP 2. From 1-decyl-3-methylimidazolium chloride [C10mim]Cl,

 $\begin{array}{c} & & & \text{tetradecanor acts constraints} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\$ tetradecanoic acid [C13COOH], MeOH (50 mL); white solid 2H), 1.84–1.90 (dt, J = 7.1 Hz, J = 7.4 Hz, 2H), 2.21–2.27 (t,

J = 7.8 Hz, 2H), 4.09 (s, 3H), 4.27–4.33 (t, *J* = 7.4 Hz, 2H), 7.08 (s, 2H), 11.76 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 14.17, 14.19 (2 × CH₃), 22.73, 22.77, 26.35, 27.17, 29.10, 29.33, 29.45, 29.54, 29.75, 29.82, 29.84, 30.15, 30.39, 31.92, 32.01 (19 × CH₂), 36.41(2 × CH₃), 39.12 $(2 \times CH_2)$, 50.00 (1 × NCH₂CH), 122.48, 122.50 (2 x NCHC), 141.28 (1 × NCHN), 180.78 (1 × COO); FT-IR: $\tilde{\nu} = 3383.37$ (w), 3147.27 (w), 3073.71 (w), 2955.41 (m), 2921.61 (s), 2852.03 (s), 2190.05 (w), 1558.77 (s), 1465.42 (m), 1309.80 (m), 1306.64 (w), 1171.66 (m), 1090.55 (w), 907.37 (m), 728.03 (vs), 639.91 (m), 626.93 (m), 569.91 (w) cm⁻¹; MS (ESI): Positive: m/z = 223.22 [M⁺]; HRMS (ESI): m/z for C₁₄H₂₇N₂⁺ calc.: 223.2169 [M⁺], found: 223.2169; MS (ESI): Negative: m/z = 227.20 [M⁻]; HRMS (ESI): m/z for C14H₂₇O₂⁻ calc.: 227.2017 [M⁻], found: 227.2017; DSC: Cr 37 °C [58.1 kJ mol⁻¹] SmA 132 °C [0.3 kJ mol⁻¹] I.; Water content: 0.89 ± 0.11 wt%.

1-Dodecyl-3-methylimidazolium tetradecanoate ([C12mim][C13COO])

Synthesis according to GP 2. From 1-dodecyl-3-methylimidazolium bromide [C12mim]Br,

$$\sim N \bigoplus N^{-C_{12}H_{25}} \xrightarrow[\bigcirc]{O} C_{13}H_{27}$$

$$C_{30}H_{61}N_2O_2$$

$$481.83$$

tetradecanoic acid [C₁₃COOH], MeOH (50 mL); white solid (86 %, 2.26 g, 4.46 mmol); ¹H NMR (500 MHz, CDCl₃): δ = 0.88 (m, 6H), 1.21–1.38 (m, 38H), 1.62–1.70 (dt, *J* = 7.8 Hz, 2H), 1.87 (dt, *J* = 7.1 Hz, *J* = 7.4 Hz, 2H), 2.20–2.27 (t,

J = 7.8 Hz, 2H), 4.08 (s, 3H), 4.30 (t, *J* = 7.4 Hz, 2H), 7.08 (s, 2H), 11.79 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 14.17 (2 × CH₃), 22.74, 22.76, 26.34, 27.35, 29.10, 29.40, 29.44, 29.45, 29.58, 29.66, 29.74, 29.80, 29.82, 29.84, 30.21, 30.37, 31.97, 32.00 (21 × CH₂), 36.34 (1 × CH₃), 39.53 (1 × CH₂), 49.94 (1 × NCH₂CH), 120.84, 122.42 (2 x NCHC), 181.02 (1 × COO). The ¹³C-peak at δ = 140 ppm for the imidazolium carbon NCHN could not be observed due to the poor signal to noise ratio.; FT-IR: $\tilde{\nu}$ = 2917.48 (s), 2849.98 (m), 2188.73 (w), 2015.08 (w), 1556.68 (s), 1466.31 (m), 1395.07 (m), 1172.36 (m), 906.54 (s), 726.96 (vs), 638.69 (m) cm⁻¹; MS (ESI): Positive: *m/z* = 251.25 [M⁺]; HRMS (ESI): *m/z* for C₁₆H₃₁N₂⁺ calc.: 251.2482 [M⁺], found: 251.2473; MS (ESI): Negative: *m/z* = 227.20 [M⁻]; HRMS (ESI): *m/z* for C14H₂₇O_{2⁻} calc.: 227.2017 [M⁻], found: 227.2014; DSC: Cr 59 °C [145.7 kJ mol⁻¹] SmA 127 °C [5.2 kJ mol⁻¹] I.; Water content: 0.99 ± 0.11 wt%.

1-Tetradecyl-3-methylimidazolium tetradecanoate ([C14mim][C13COO])

Synthesis according to GP 2. From 1-tetradecyl-3-methylimidazolium bromide [C14mim]Br,

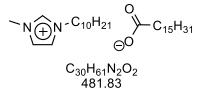
 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

2H), 4.09 (s, 3H), 4.29 (t, J = 7.4 Hz, 2H), 7.19-7.32 (m, 2H), 11.11 (s, 1H) ppm.; ¹³C NMR (75 MHz, CDCl₃) δ 14.23 (2 × *C*H₃), 22.80, 26.38, 26.74, 29.13, 29.47, 29.49, 29.63, 29.72,

29.76, 29.79, 29.82, 29.85, 29.99, 30.41, 32.04 ($23 \times CH_2$), 36.60 ($1 \times CH_3$), 38.10 ($1 \times CH_2$), 50.15 (1 × NCH₂CH), 121.14, 122.72 (2 x NCHC), 140.21 (1 × NCHN), 180.18 (1 × COO).; FT-IR: $\tilde{\nu} = 2921.73$ (m), 2851.07 (m), 2198.76 (w9, 1560.13 (m), 1466.55 (w), 1400.51 (w), 1170.30 (w), 905.99 (s), 725.52 (vs), 641.67 (m), 625.84 (w) cm⁻¹; MS (ESI): Positive: m/z =279.28 [M⁺]; HRMS (ESI): *m/z* for C₁₈H₃₅N₂⁺ calc.: 279.2795 [M⁺], found: 279.2795; MS (ESI): Negative: m/z = 227.20 [M⁻]; HRMS (ESI): m/z for C14H₂₇O₂⁻ calc.: 227.2018 [M⁻], found: 227.2017; POM: Cr 70 °C, SmA 129 °C; Water content: 0.65 ± 0.11 wt%.

1-Hexadecyl-3-methylimidazolium tetradecanoate ([C16mim][C13COO])

Synthesis according to GP 2. From 1-hexadecyl-3-methylimidazolium bromide [C16mim]Br,

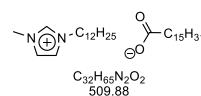

$$\underbrace{ \begin{array}{c} & & \\ &$$

tetradecanoic acid [C13COOH], MeOH (50 mL); white solid (77 %, 2.13 g, 3.98 mmol); ¹H NMR (500 MHz, CDCl₃): $\delta =$ 0.85–0.91 (m, 6H), 1.25 (m, 46H), 1.66 (dt, *J* = 7.8 Hz, 2H), 1.86 (dt, J = 7.1 Hz, 7.5 Hz, 2H), 2.21–2.28 (t, J = 7.8 Hz, 2H),

4.09 (s, 3H), 4.27–4.34 (t, J = 7.5 Hz, 2H), 6.98–7.12 (m, 2H), 11.92 (s, 1H) ppm.; ¹³C NMR $(101 \text{ MHz}, \text{CDCl}_3) \delta 14.23 (2 \times C\text{H}_3), 22.81, 26.39, 27.38, 29.15, 29.48, 29.50, 29.64, 29.73,$ $29.78, 29.80, 29.82, 29.86, 29.87, 29.89, 30.25, 30.42, 32.05 (25 \times CH_2), 36.43 (1 \times CH_3), 39.55$ $(1 \times CH_2)$, 50.03 $(1 \times NCH_2CH)$, 120.77, 122.27 $(2 \times NCHC)$, 181.24 $(1 \times COO)$. The ¹³C-peak at $\delta = 140$ ppm for the imidazolium carbon NCHN could not be observed due to the poor signal to noise ratio.; FT-IR: $\tilde{\nu} = 3136.38 \text{ m}$ (w), 3031.85 (w), 2955.00 (m), 2914.78 (vs), 2848.63 (s), 1558.79 (s), 1466.80 (m), 1424.32 (w), 1401.04 (m), 1288.17 (w), 11171.14 (w), 905.87 (w), 778.17 (w), 720.50 (m), 664.00 (w), 627.95 (w) cm⁻¹; MS (ESI): Positive: m/z = 307.31 [M⁺]; HRMS (ESI): *m/z* for C₂₀H₃₉N₂⁺ calc.: 307.3108 [M⁺], found: 307.3099; MS (ESI): Negative: m/z = 227.20 [M⁻]; HRMS (ESI): m/z for C₁₄H₂₇O₂⁻ calc.: 227.2017 [M⁻], found: 227.2033; DSC: Cr 58 °C [89.2 kJ mol⁻¹] SmA 150 °C [2.1 kJ mol⁻¹] I.; Water content: 0.89 ± 0.11 wt%.

1-Decyl-3-methylimidazolium hexadecanoate ([C₁₀mim][C₁₅COO])

Synthesis according to GP 2. From 1-decyl-3-methylimidazolium chloride [C10mim]Cl,

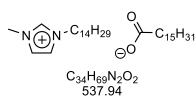


hexadecanoic acid [C15COOH], MeOH (50 mL); white solid $\begin{array}{c} & \underset{O}{\longrightarrow} \\ & \underset{O}{\longrightarrow}$ 0.88 (m, 6H), 1.18–1.40 (m, 38H), 1.62–1.70 (dt, J=7.8 Hz, 2H), 1.84-1.90 (dt, J = 7.1 Hz, 7.5 Hz, 2H), 2.20-2.27 (t,

J = 7.8 Hz, 2H), 4.08 (s, 3H), 4.27–4.33 (t, *J* = 7.5 Hz, 2H), 7.08 (s, 2H), 11.83 (s, 1H) ppm.; ¹³C NMR (75 MHz, CDCl₃) δ 14.12 (2 × CH₃), 14.14, 22.67, 22.71, 26.28, 27.34, 29.05, 29.27, 29.39, 29.48, 29.68, 29.74, 29.78, 30.17, 30.33, 31.86, 31.95 (21 × CH₂), 36.25 (1 × CH₃), 39.56 $(1 \times CH_2)$, 49.86 $(1 \times NCH_2CH)$, 120.85, 122.45 $(2 \times NCHC)$, 180.92 $(1 \times COO)$. The ¹³C-peak at $\delta = 140$ ppm for the imidazolium carbon NCHN could not be observed due to the poor signal to noise ratio.; FT-IR: $\tilde{\nu} = 3142.83$ (m), 3029.11 (m), 2955.88 (m), 2917.17 (vs), 2847.36 (vs), 1669.60 (w), 1557.29 (vs), 1464.00 (m), 1424.45 (m), 1399.78 (s), 1286.67 (w), 1274.08 (w), 1170.73 (m), 1098.36 (w), 1021.81 (w), 904.88 (w), 777.53 (m), 738.15 (m), 721.53 (s), 663.83 (m), 627.46 (m), 520.01 (w), 490.04 (w) cm⁻¹; MS (ESI): Positive: m/z = 223.22 [M⁺]; HRMS (ESI): m/z for C₁₄H₂₇N₂⁺ calc.: 223.2169 [M⁺], found: 223.2168; MS (ESI): Negative: m/z =255.23 [M⁻]; HRMS (ESI): *m/z* for C₁₆H₃₁O₂⁻ calc.: 255.2330 [M⁻], found: 255.2331; DSC: Cr 54 °C [75.7 kJ mol⁻¹] SmA 128 °C [2.6 kJ mol⁻¹] I.; Water content: 0.17 ± 0.11 wt%.

1-Dodecyl-3-methylimidazolium hexadecanoate ([C₁₂mim][C₁₅COO])

Synthesis according to GP 2. From 1-dodecyl-3-methylimidazolium bromide [C₁₂mim]Br,

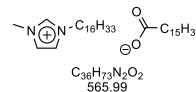


hexadecanoic acid [C₁₅COOH], MeOH (50 mL); white solid $\begin{array}{c} & & & \\ & & & \\ & & & \\ & &$ 1.87 (dt, J = 7.1 Hz, 7.4 Hz, 2H), 2.20–2.27 (t, J = 7.8 Hz,

2H), 4.08 (s, 3H), 4.30 (t, J = 7.4 Hz, 2H), 7.08 (s, 2H), 11.74 (s, 1H) ppm.; ¹³C NMR (75 MHz, CDCl₃) δ 14.18 (2 × *C*H₃), 22.75, 26.33, 27.25, 29.10, 29.40, 29.44, 29.57, 29.66, 29.73, 29.79, 29.82, 30.17, 30.38, 31.97, 31.99 ($23 \times CH_2$), 36.32 ($1 \times CH_3$), 39.32 ($1 \times CH_2$), 49.93 ($1 \times CH_2$) NCH₂CH), 120.84, 122.40 (2 x NCHC), 141.56 (1 × NCHN), 180.91 (1 × COO); FT-IR: $\tilde{\nu}$ = 3135.80 (m), 3029.15 (m), 2956.07 (m), 2915.15 (vs), 2848.20 (s), 2290.28 (w), 1673.16 (w), 1557.47 (s), 1464.35 (m), 1425.18 (m), 1400.41 (s), 1315.09 (w), 1287.94 (w), 1274.69 (w), 1253.53 (w), 1232.22 (w), 1172.29 (m), 1097.94 (w), 907.19 (m), 779.02 (m), 722.77 (s), 664.47 (m), 628.53 (m), 569.74 (w), 491.08 (w) cm⁻¹; MS (ESI): Positive: m/z = 251.25 [M⁺]; HRMS (ESI): *m/z* for C₁₆H₃₁N₂⁺ calc.: 251.2482 [M⁺], found: 251.2478; MS (ESI): Negative: m/z = 255.23 [M⁻]; HRMS (ESI): m/z for C₁₆H₃₁O₂⁻ calc.: 255.2330 [M⁻], found: 255.2328; DSC: Cr 52 °C [98.9 kJ mol-1] SmA 138 °C [3.3 kJ mol⁻¹] I.; Water content: 0.66 ± 0.11 wt%.

1-Tetradecyl-3-methylimidazolium hexadecanoate ([C14mim][C15COO])

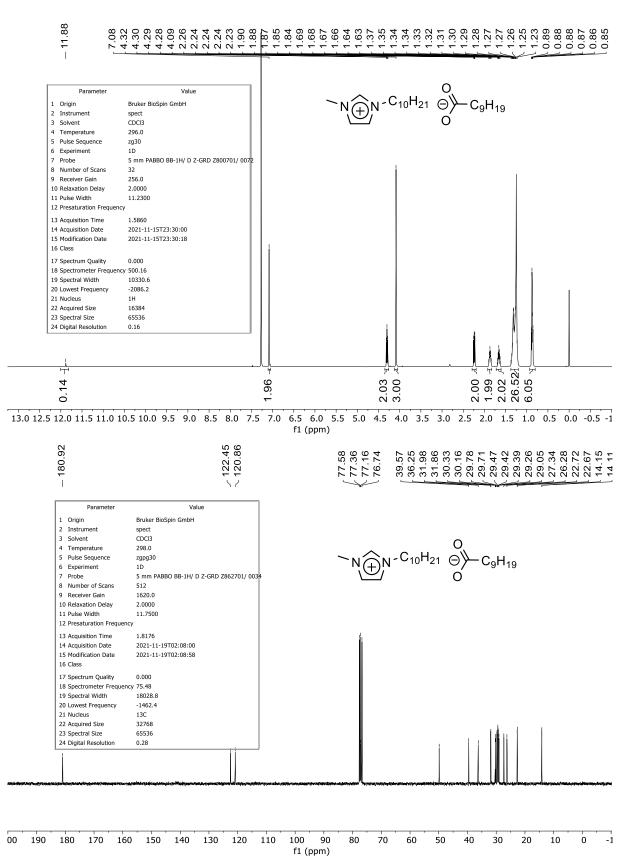
Synthesis according to GP 2. From 1-tetradecyl-3-methylimidazolium bromide [C14mim]Br,

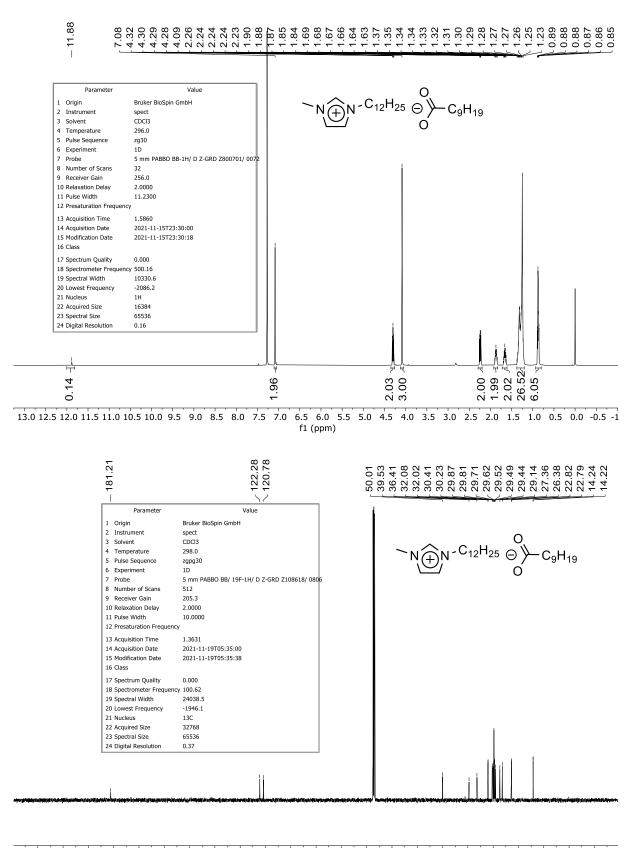

hexadecanoic acid [C15COOH], MeOH (50 mL); white solid $\sim_{N \bigoplus N} C_{14}H_{29} \xrightarrow{O} C_{15}H_{31}$ (96 %, 2.86 g, 5.35 mmol); ¹H NMR (500 MHz, CDCl₃): $\delta = 0.88$ (m 6H) 1 20–1 40 (m 46H) 1 65 (dt I = 7.8 Hz 2H) 0.88 (m, 6H), 1.20–1.40 (m, 46H), 1.65 (dt, *J* = 7.8 Hz, 2H), 1.86 (dt, J = 7.1 Hz, J = 7.4 Hz, 2H), 2.21–2.28 (t, J = 7.8 Hz,

2H), 4.08 (s, 3H), 4.30 (t, J = 7.4 Hz, 2H), 7.06 (m, 2H), 11.81 (s, 1H) ppm.; ¹³C NMR

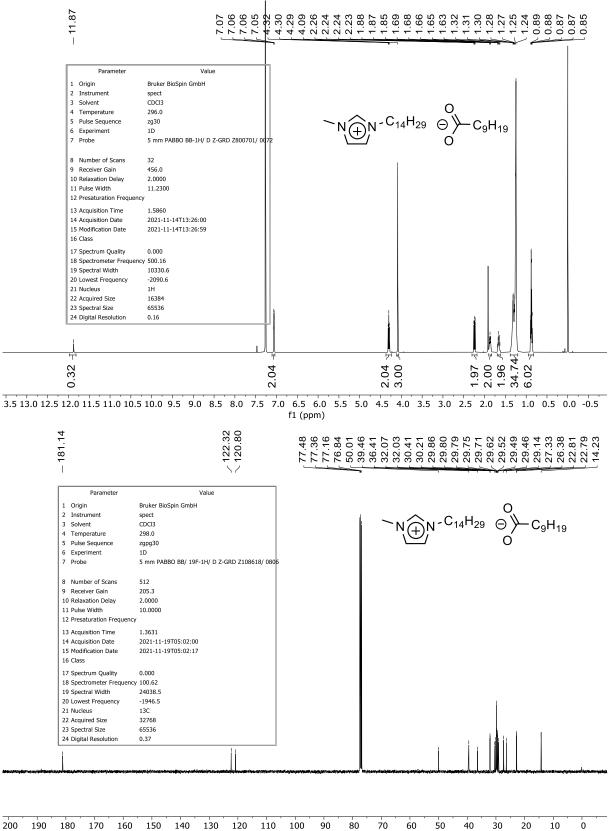
 $(75 \text{ MHz}, \text{CDCl}_3) \delta 14.20 \ (2 \times CH_3), 22.77, 26.35, 27.35, 29.12, 29.44, 29.47, 29.60, 29.69,$ 29.73, 29.76, 29.81, 29.85, 30.22, 30.39, 32.01 (25 × CH₂), 36.35 (1 × CH₃), 39.53 (1 × CH₂), 49.95 (1 × NCH₂CH), 120.83, 122.38 (2 x NCHC), 181.09 (1 × COO). The ¹³C-peak at δ = 140 ppm for the imidazolium carbon NCHN could not be observed due to the poor signal to noise ratio.; FT-IR: $\tilde{\nu} = 3136.92$ (m), 3029.84 (m), 2956.17 (m), 2914.66 (vs), 2848.50 (s), 1673.64 (w), 1558.74 (s), 1466.40 (m), 1424.78 (w), 1401.29 (m), 1274.16 (w), 1170.36 (m), 903.81 (w), 771.93 (m), 720.70 (m), 665.15 (m), 628.04 (m), 520.72 (w), 489.24 (w), 456.17 (w), 421.74 (w) cm⁻¹; MS (ESI): Positive: m/z = 279.28 [M⁺]; HRMS (ESI): m/z for C₁₈H₃₅N₂⁺ calc.: 279.2795 [M⁺], found: 279.2787; MS (ESI): Negative: m/z = 255.23 [M⁻]; HRMS (ESI): m/zfor C16H₃₁O₂⁻ calc.: 255.2330 [M⁻], found: 255.2336; DSC: Cr 64 °C [103.6 kJ mol⁻¹] SmA 150 °C [4.0 kJ mol-1] I.; Water content: 0.81 ± 0.11 wt%.

1-Hexadecyl-3-methylimidazolium hexadecanoate ([C16mim][C15COO])

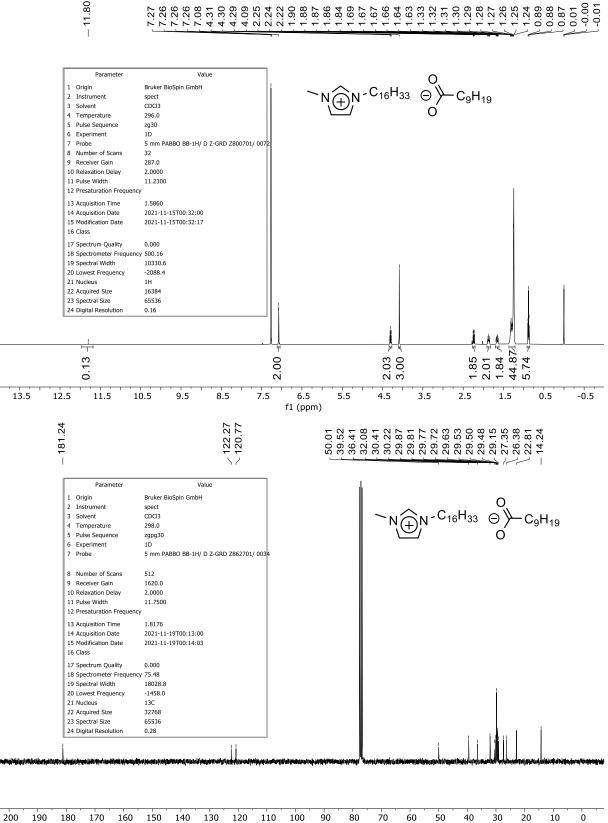

Synthesis according to GP 2. From 1-hexadecyl-3-methylimidazolium bromide [C₁₆mim]Br,

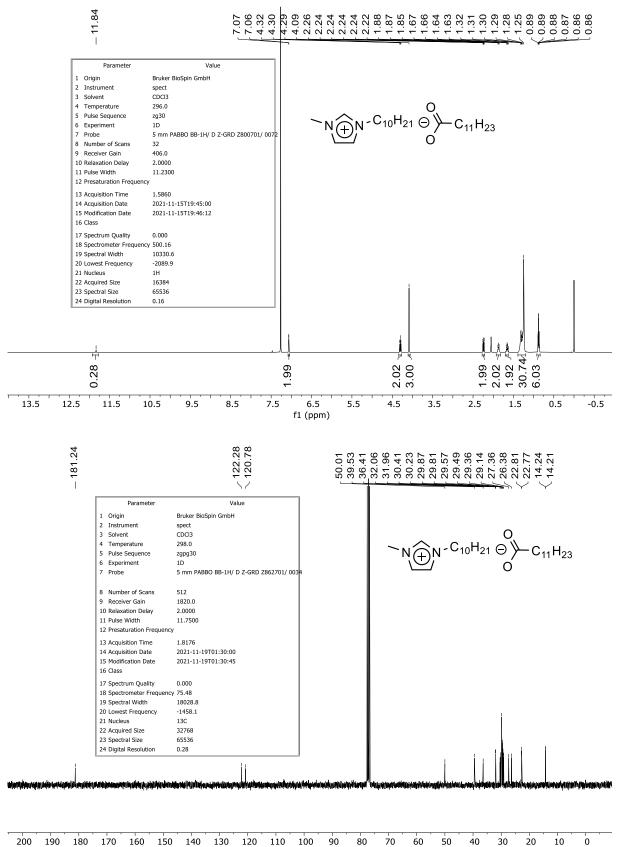


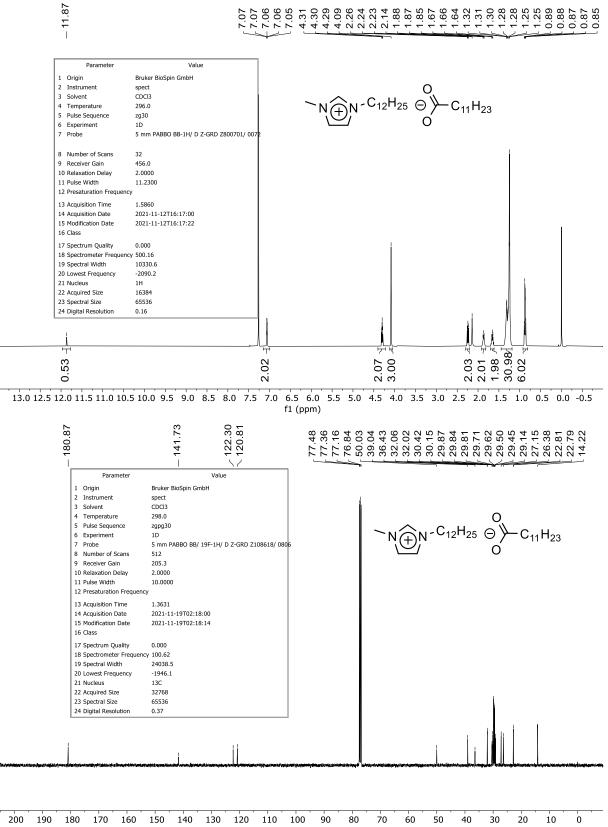
 $\begin{array}{c} & \text{nexauccanor acts to the formula} \\ & & & \text{nexauccanor acts to the formula} \\ & & & \text{nexauccanor acts to the formula} \\ & & & & \text{nexauccanor acts to the formula} \\ & & & & & & & & & & & &$ hexadecanoic acid [C15COOH], MeOH (50 mL); white solid J = 7.8 Hz, 2H), 1.87 (dt, J = 7.1 Hz, J = 7.4 Hz, 2H), 2.21–

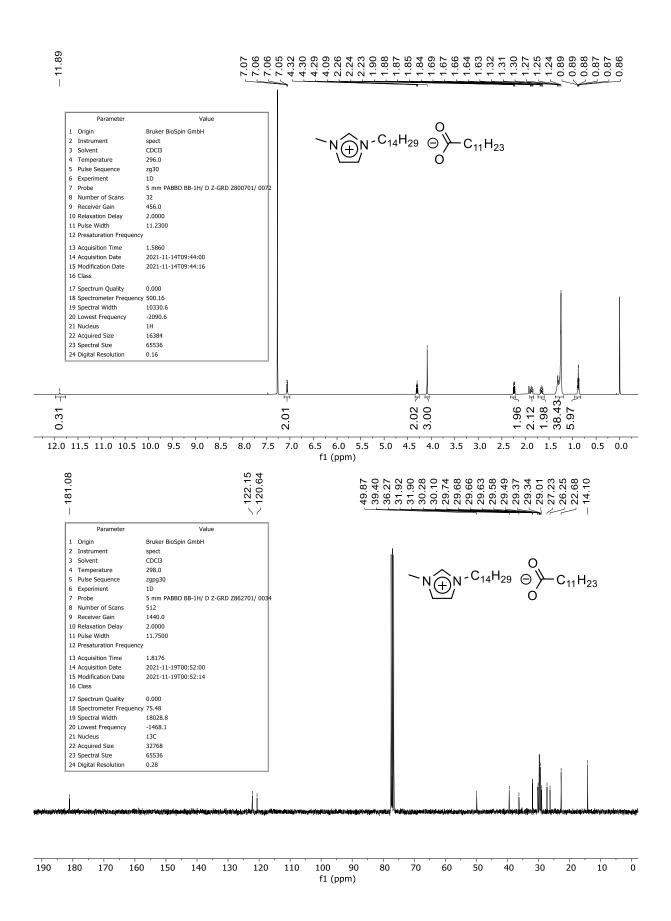

2.27 (t, J = 7.8 Hz, 2H), 4.09 (s, 3H), 4.30 (t, J = 7.4 Hz, 2H), 7.07 (m, 2H), 11.88 (s, 1H) ppm.; ¹³C NMR (101 MHz, CDCl₃) δ 14.24 (2 × CH₃), 22.82, 26.39, 27.39, 29.16, 29.50, 29.64, 29.74, 29.80, 29.83, 29.86, 29.89, 29.90, 30.26, 30.43, 32.06 (27 × CH₂), 36.41 (1 × CH₃), 39.57 (1 × *C*H₂), 50.02 (1 × N*C*H₂CH), 120.71, 122.18 (2 x N*C*HC), 181.27 (1 × COO^{-}). The ¹³C-peak at $\delta = 140$ ppm for the imidazolium carbon NCHN could not be observed due to the poor signal to noise ratio.; FT-IR: $\tilde{\nu} = 3261.69$ (w), 3140.68 (w), 2954.21 (m), 2914.12 (vs), 2872.25 (w), 2848.64 (s), 1688.00 (w), 1565.67 (s), 1470.85 (m), 1399.12 (m), 1176.83 (w), 1097.67 (w), 908.20 (w), 730.33 (m), 719.74 (m), 641.22 (w), 567.05 (w) cm⁻¹; -MS (ESI): Positive: m/z =307.31 [M⁺]; HRMS (ESI): m/z for C₂₀H₃₉N₂⁺ calc.: 307.3108 [M⁺], found: 307.3108; HRMS (ESI): Negative: m/z = 255.23 [M⁻]; HRMS (ESI): m/z for C16H₃₁O₂⁻ calc.: 255.2330 [M⁻], found: 255.2333; DSC: Cr 79 °C [73.8 kJ mol⁻¹] SmA 133 °C [1.4 kJ mol⁻¹] I.; Water content: 0.09 ± 0.11 wt%.

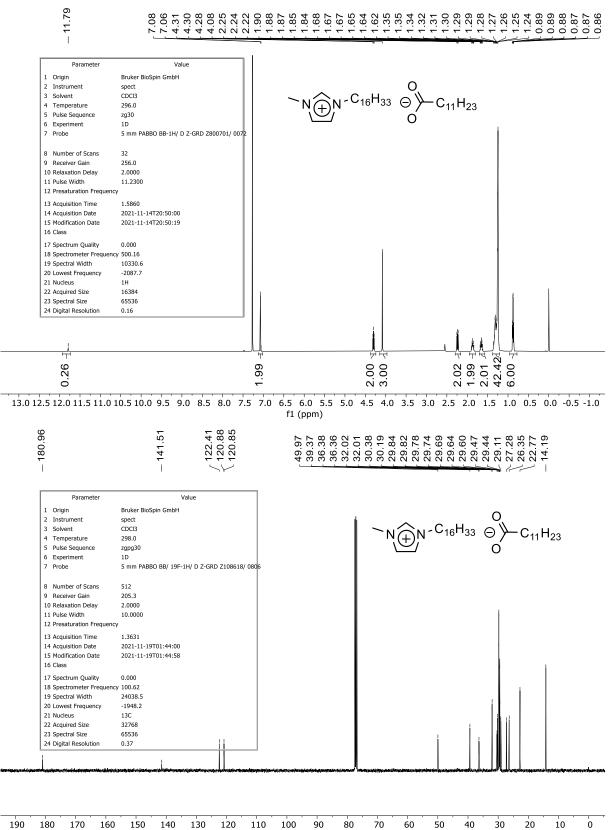
3. NMR spectra



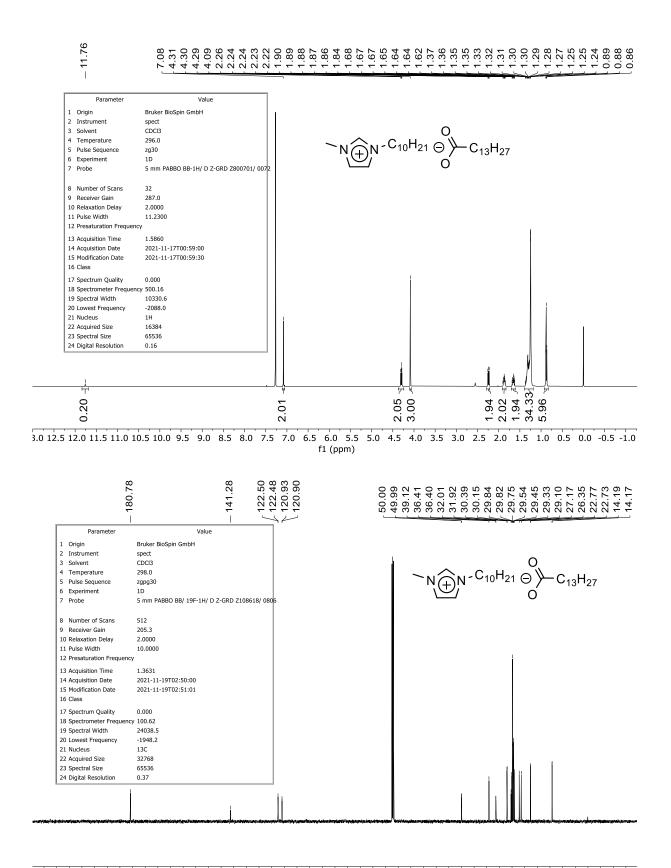

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

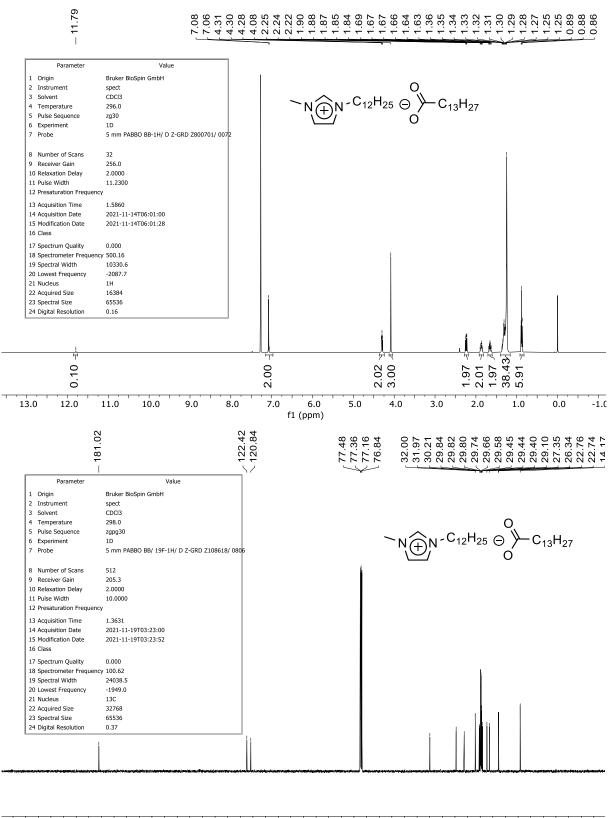


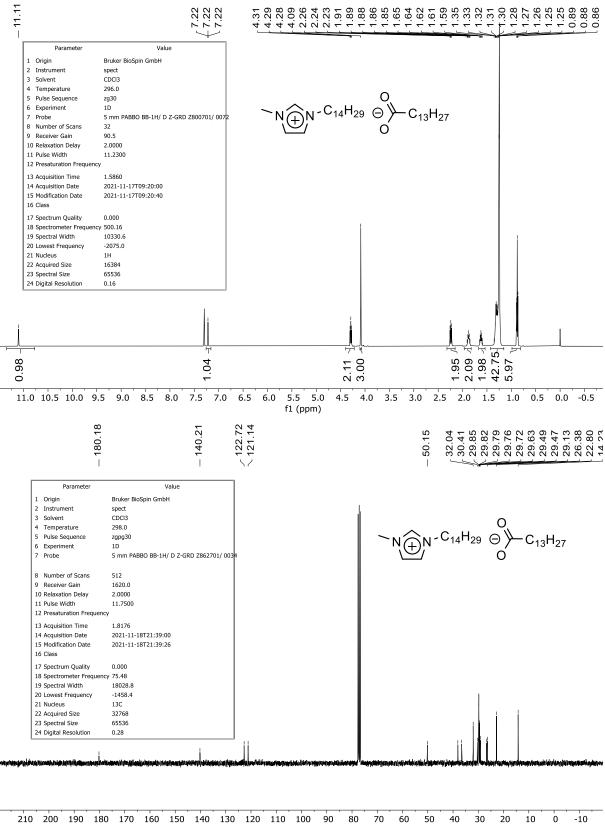


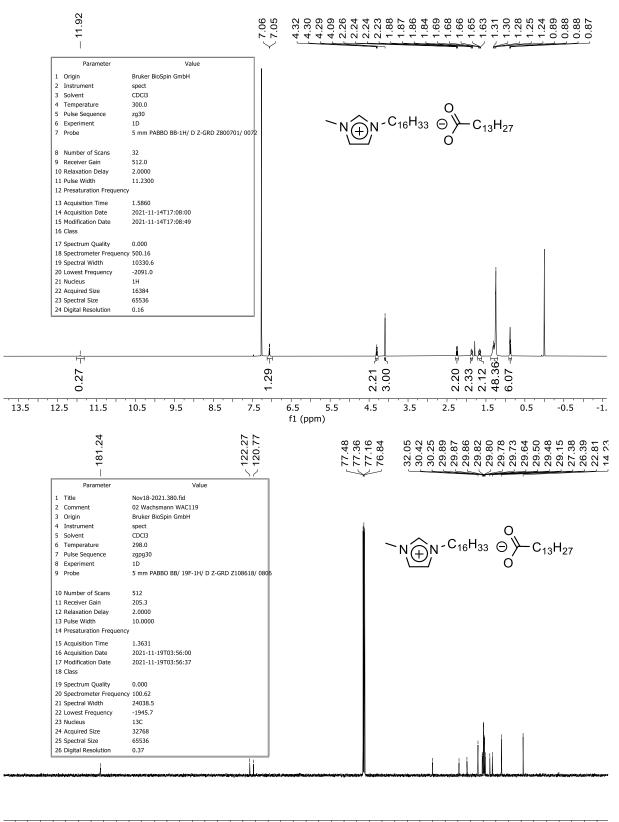


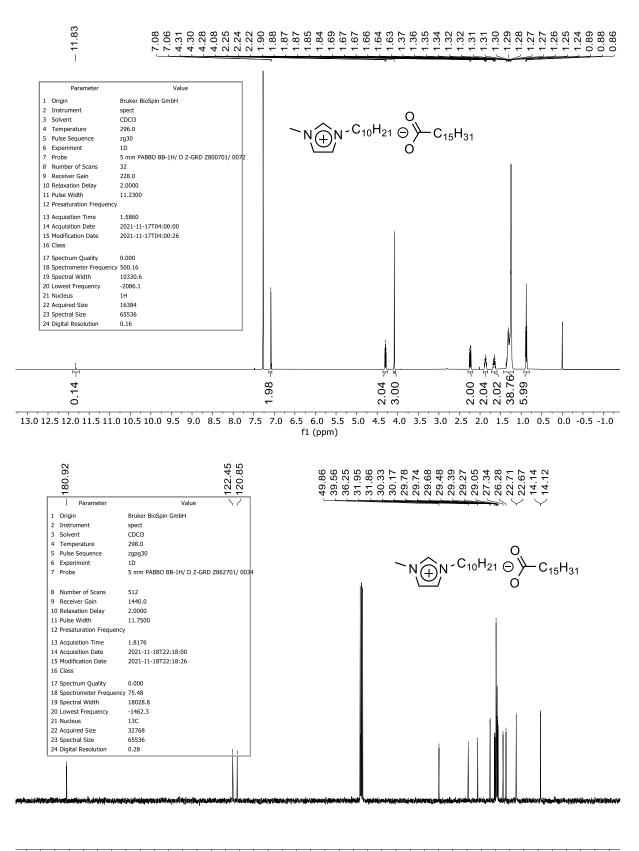
f1 (ppm)

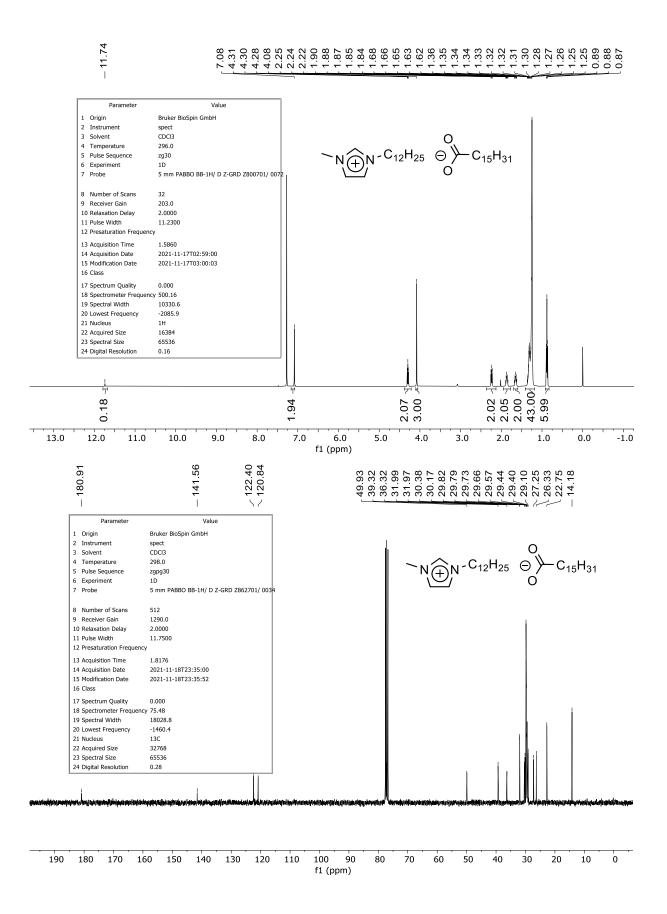


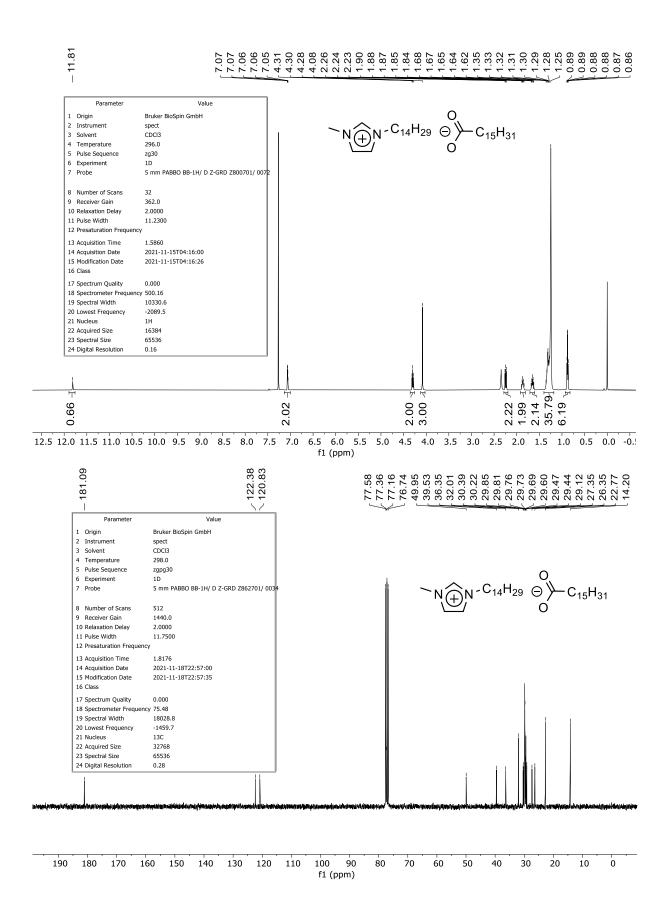





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)





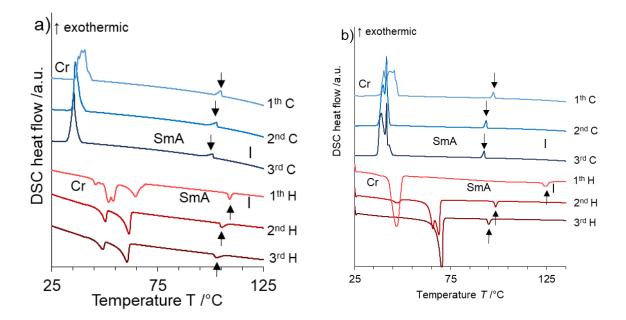
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-10 f1 (ppm)

S28

f1 (ppm)

4. DSC and mesophase analysis


Table S1: Phase transition temperatures i.e. melting temperatures T_m [°C], clearing temperatures T_{Cl} and corresponding enthalpies ΔH [kJ/mol] of alkylimidazolium carboxylates [C_nmim][C_{m-1}COO]. Values were taken out of the DSC curves of the first heating/cooling cycle due to degradation and additionally verified via POM. • was found in the DSC, * was found via POM investigation; - not observed. The following phases were observed: Cr: crystallin; SmA: smectic A; I: isotropic; n = chain length of cation, m = chain length of anion.

n	m	Cr	$T_{\rm m}$ (ΔH)	SmA	$T_{\rm Cl}(\Delta H)$	Ι	Cycle
10	10	•	61 (74.2)	•	108 (2.9)	•	1 th heat
		•	45 (38.7)	•	105 (2.7)	•	1 th cool
12	10	•	43 (63.4)	•	122 (3.5)	•	1 th heat
		•	43 (50.7)	•	98 (2.3)	•	1 th cool
14	10	•	47 (77.1)	•	126 (3.2)	•	1 th heat
		•	35 (31.4)	•	128 (2.3)	•	1 th cool
16	10	•	55 (90.1)	•	146 (3.6)	•	1 th heat
		•	37 (85.6)	•	145 (2.9)	•	1 th cool
10	12	•	42 (68.0)	•	144 (3.7)	•	1 th heat
		•	30 (53.6)	•	139 (3.3)	•	1 th cool
12	12	•	48 (79.6)	•	118 (3.0)	•	1 th heat
		•	59 (20.0)	•	102 (1.9)	•	1 th cool
14	12	•	57 (78.5)	•	139 (2.7)	•	1 th heat
		•	54 (34.1)	•	123 (1.8)	•	1 th cool
16	12	•	55 (76.6)	•	126 (2.3)	•	1 th heat
		•	52 (40.1)	•	96 (1.6)	•	1 th cool
10	14	•	37 (58.1)	•	132 (0.3)	•	1 th heat
		•	35 (15.6)	•	129 (2.3)	•	1 th cool
12	14	•	59 (145.7)	•	127 (5.2)	•	1 th heat
		•	35 (49.4)	•	123 (4.4)	•	1 th cool
14	14	•	70 (75.9)	*	120* (-)	*	1 th heat
		*	64 (-)	*	115* (-)	*	1 th cool
16	14	•	58 (89.2)	•	150 (2.1)	•	1 th heat
		•	46 (40.0)	•	143 (1.5)	•	1 th cool
10	16	•	45 (75.7)	•	128 (2.6)	•	1 th heat
		•	46 (45.9)	•	99 (1.7)	•	1 th cool
12	16	•	52 (98.9)	•	138 (3.3)	•	1 th heat
		•	56 (26.7)	•	129 (2.1)	•	1 th cool
14	16	•	64 (103.6)	•	150 (4.0)	•	1 th heat
		•	43 (37.0)	•	148 (1.9)	•	1 th cool
16	16	•	79 (73.8)	•	133 (1.4)	•	1 th heat
		•	78 (33.8)	٠	126 (1.2)	•	1 th cool

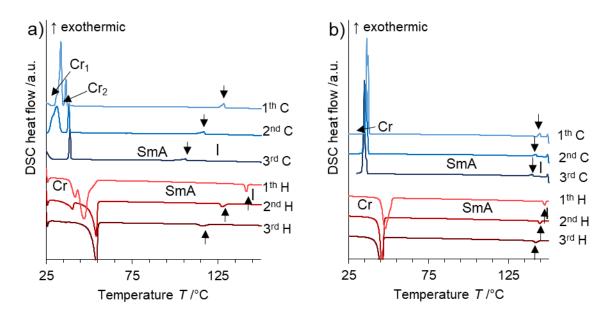
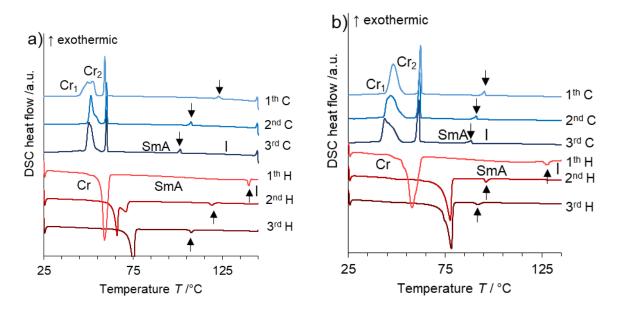
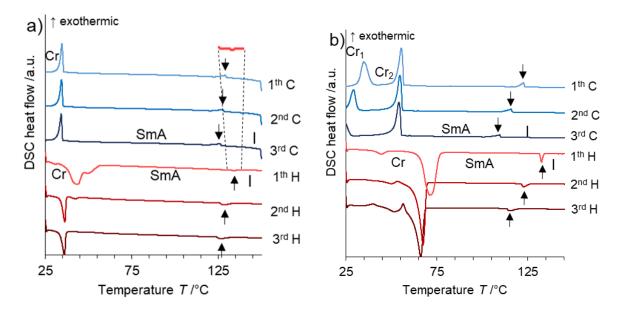
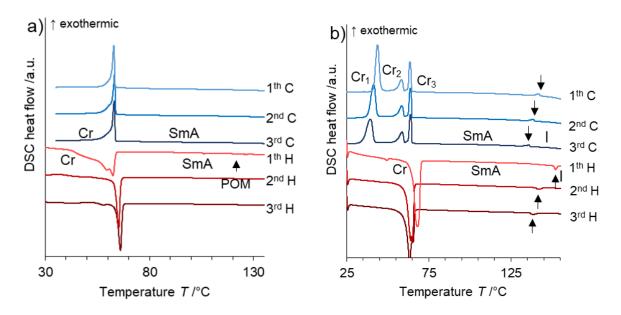

^{*a*} Additional Cr–Cr transitions were observed for [C₁₄mim][C₉COO] at 37 °C 1th cooling (7.2 kJ/mol), [C₁₆mim][C₁₁COO] at 63 °C 1th cooling (14.2 kJ/mol), [C₁₄mim][C₁₁COO] at 60 °C 1th cooling (11.8 kJ/mol), [C₁₂mim][C₁₃COO] at 56 °C 1th cooling (50.7 kJ/mol), [C₁₆mim][C₁₃COO] at 60 °C 1th cooling (10.1 kJ/mol), 65 °C 1th cooling (14.5 kJ/mol) and [C₁₄mim][C₁₅COO] at 65 °C 1th cooling (28.6 kJ/mol), at 74 °C 1th cooling (1.5 kJ/mol).

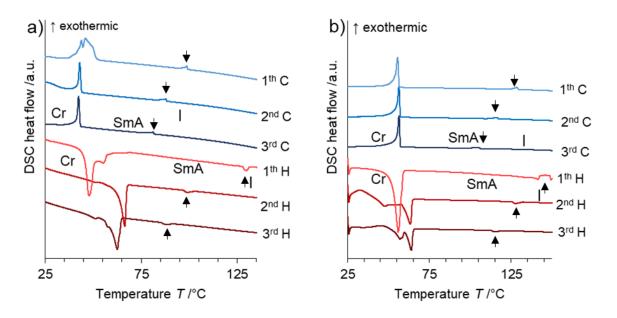
Table S2: Phase transition temperatures i.e. melting temperatures T_m [°C], clearing temperatures T_{Cl} [°C] and corresponding enthalpies ΔH [kJ/mol] of alkylimidazolium derivatives [**C**_nmim]. Values were taken out of the DSC curves of the first heating/cooling cycle due to degradation and additionally verified via POM. • was found in the DSC;- not observed. The following phases were observed: Cr: crystallin; I: isotropic. The mesophase was not further investigated.

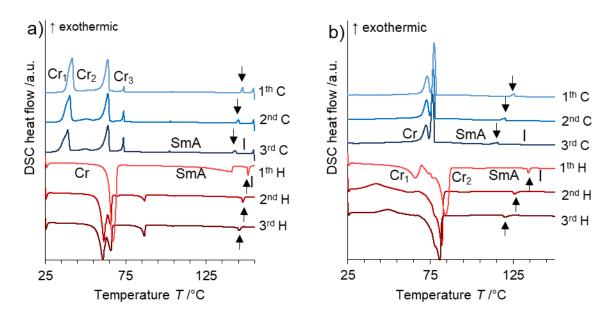

Compound	Cr	$T_{\rm m}$ (ΔH)	Mesophase	$T_{\rm Cl}$ (ΔH)	Ι	Cycle
[C10mim]Br	•	17 (1.0)	-	-	•	1 th heat
	•	-3 (0.1)	-	-	•	1 th cool
[C12mim]Br	•	45 (46.2)	•	130 (0.5)	•	1 th heat
	•	13 (32.5)	•	129 (0.5)	•	1 th cool
[C14mim]Br	•	55 (53.5)	•	180 (1.2)	•	1 th heat
	•	20 (56.9)	•	174 (1.0)	•	1 th cool
[C16mim]Br	•	54 (60.2)	•	223 (1.3)	•	1 th heat
	•	39 (19.1)	•	205 (1.2)	•	1 th cool


Figure S1: DSC-curves of a) **[C₁₀mim][C₉COO]** and b) **[C₁₂mim][C₉COO]**. Cr: crystallin; SmA: smectic A; I: isotropic. H/C: Heating/Cooling (rate 5 K/min).


Figure S2: DSC-curves of a) **[C₁₄mim][C₉COO]** and **b) [C₁₆mim][C₉COO]**. Cr: crystallin; SmA: smectic A; I: isotropic. H/C: Heating/Cooling (rate 5 K/min).


Figure S3: DSC-curves of a) **[C10mim][C11COO]** and b) **[C12mim][C11COO]**. Cr: crystallin; SmA: smectic A; I: isotropic. H/C: Heating/Cooling (rate 5 K/min).


Figure S4: DSC-curves of a) [C₁₄mim][C₁₁COO] b) [C₁₆mim][C₁₁COO]. Cr: crystallin; SmA: smectic A; I: isotropic. H/C: Heating/Cooling (rate 5 K/min).


Figure S5: DSC-curves of a) **[C10mim][C13COO]** and b) **[C12mim][C13COO]**. Cr: crystallin; SmA: smectic A; I: isotropic. H/C: Heating/Cooling (rate 5 K/min).

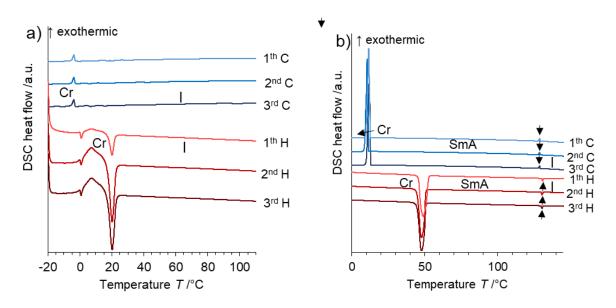

Figure S6: DSC-curves of a) **[C14mim][C13COO]** and b) **[C16mim][C13COO]**. Cr: crystallin; SmA: smectic A; I: isotropic. H/C: Heating/Cooling (rate 5 K/min).


Figure S7: DSC-curves of a) **[C10mim][C15COO]** and b) **[C12mim][C15COO]**. Cr: crystallin; SmA: smectic A; I: isotropic. H/C: Heating/Cooling (rate 5 K/min).

Figure S8: DSC-curves of a) **[C14mim][C15COO]** and b) **[C16mim][C15COO]**. Cr: crystallin; SmA: smectic A; I: isotropic. H/C: Heating/Cooling (rate 5 K/min).

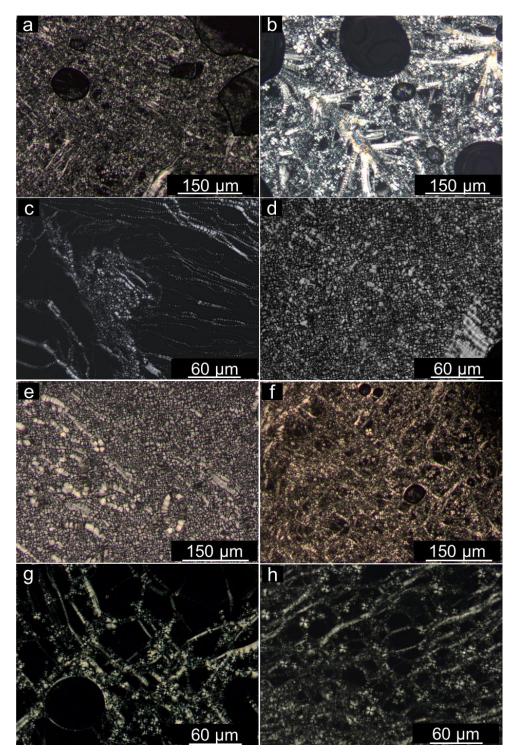


Figure S9: DSC-curves of a) **[C10mim]** and b) **[C12mim]**. Cr: crystallin; SmA: smectic A; I: isotropic. H/C: Heating/Cooling (rate 5 K/min).

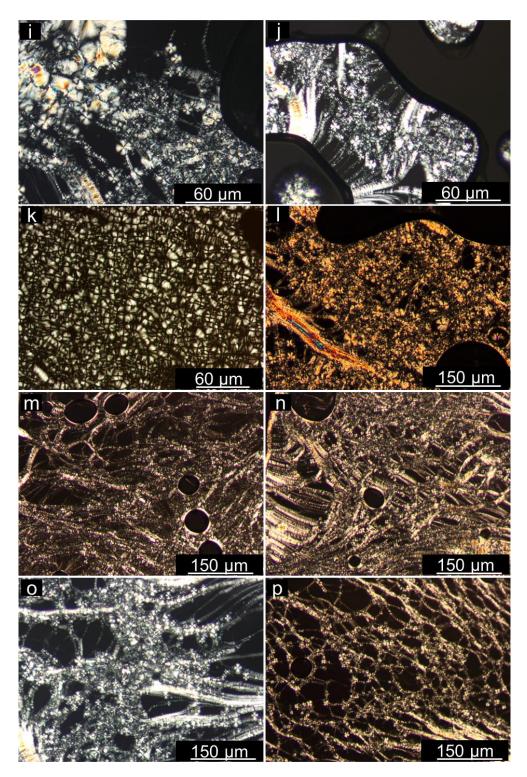


Figure S10: DSC-curves of a) **[C14mim]** and b) **[C16mim]**. Cr: crystallin; SmA: smectic A; I: isotropic. H/C: Heating/Cooling (rate 5 K/min).

5. Polarization microscopy studies

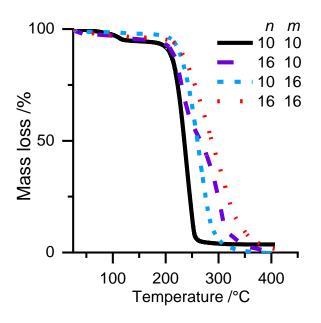


Figure S11: POM textures as seen between crossed polarizers upon cooling from the isotropic liquid (cooling rate 2K/min) of imidazolium carboxylates $[C_nmim][C_m-1COO]$. a) [C₁₀mim][C₉COO] temp. 100 °C, magnification 100x, b) [C₁₂mim][C₉COO] temp. 110 °C, magnification 100x, c) [C₁₄mim][C₉COO] temp. 110 °C, magnification 200x, d) [C₁₆mim][C₉COO] temp. 90 °C, magnification 200x, e) [C₁₀mim][C₁₁COO] temp. 100 °C, magnification 100x, f) [C₁₂mim][C₁₁COO] temp. 100 °C, magnification 100x, f) [C₁₂mim][C₁₁COO] temp. 100 °C, magnification 100x, g) [C₁₄mim][C₁₁COO] temp. 110 °C, magnification 200x, h) [C₁₆mim][C₁₁COO] temp. 120 °C, magnification 100x.

Figure S12: POM textures as seen between crossed polarizers upon cooling from the isotropic liquid (cooling rate 2K/min) of imidazolium carboxylates $[C_nmim][C_{m-1}COO]$. i) $[C_{10}mim][C_{13}COO]$ temp. 110 °C, magnification 200x, j) $[C_{12}mim][C_{13}COO]$ temp. 100 °C, magnification 200x, k) $[C_{14}mim][C_{13}COO]$ temp. 84 °C, magnification 200x, l) $[C_{16}mim][C_{13}COO]$ temp. 90 °C, magnification 100x, m) $[C_{10}mim][C_{15}COO]$ temp. 80 °C, magnification 100x, n) $[C_{12}mim][C_{15}COO]$ temp. 90 °C, magnification 100x, p) $[C_{16}mim][C_{15}COO]$ temp. 90 °C, magnification 100x.

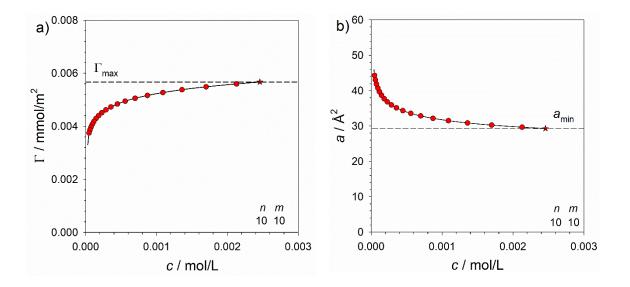

6. Thermogravimetric analysis

Figure S13: TGA diagram of exemplaric samples [C₁₀mim][C₉COO], [C₁₆mim][C₉COO], [C₁₆mim][C₁₅COO] and [C₁₆mim][C₁₅COO]. The measurements were performed from 25 to 450 °C with a constant heating rate of 10 K/min.

7. Surface tension measurements

For the determination of the minimum headgroup area a_{\min} of the salt-free new catanionic [C_nmim][C_{m-1}COO]'s the surface tension data were analyzed with the Gibbs adsorption isotherm (eq. 1, see manuscript) using a prefactor of v = 2. In more detail, the decrease of the surface tension data was described with a polynomial (quadratic) fit⁵ to determine the surface excess concentration Γ and the head group area a as a function of the [C_nmim][C_{m-1}COO] concentration according to eqs. 1 and 2 (see manuscript), respectively. Figure S14 a) shows, by means of [C₁₀mim][C₉COO], that Γ systematically increases with increasing concentration of the [C₁₀mim][C₉COO]'s, while the head group area a systematically decreases (b)). As can be seen, the values of the maximum surface excess concentration Γ_{max} and the minimum headgroup area a_{\min} can be determined nicely from these plots by extrapolation to the critical micelle concentration (indicated by the stars).

Figure S14: a) Surface excess concentration Γ and b) head group area *a* as a function of the **[C10mim][C9COO]** concentration determined from the analysis of the surface tension data (*T*=25 °C) according to eqs. 1 and 2, respectively. Γ_{max} and a_{\min} were determined by extrapolation to the critical micelle concentration (indicated by the stars).

The cmc values obtained from the intersection of the quadratic fit describing the decrease of the surface tension data⁵ and a linear extrapolation of the plateau data are compiled in the Table S3.

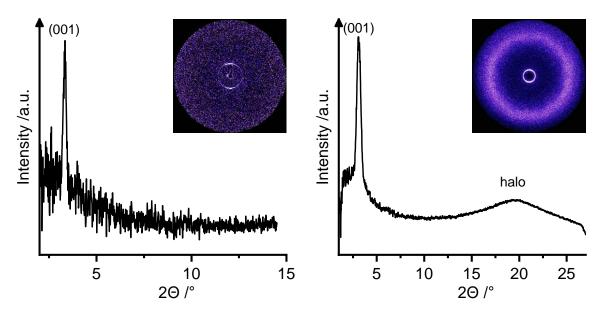
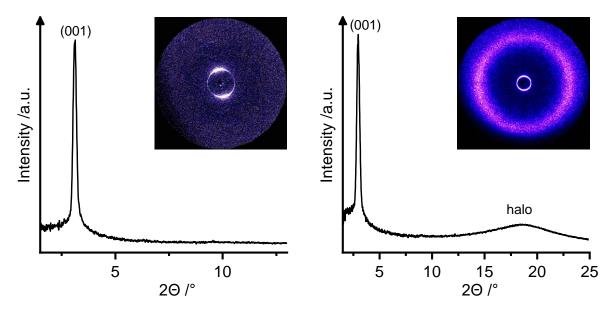
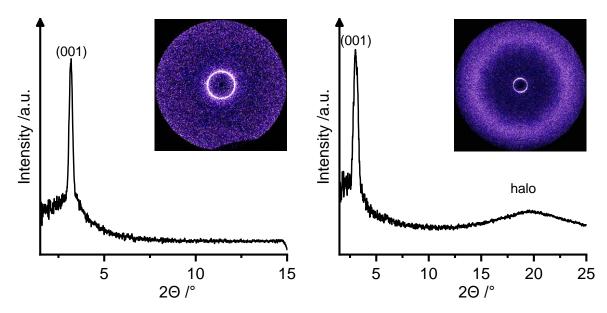
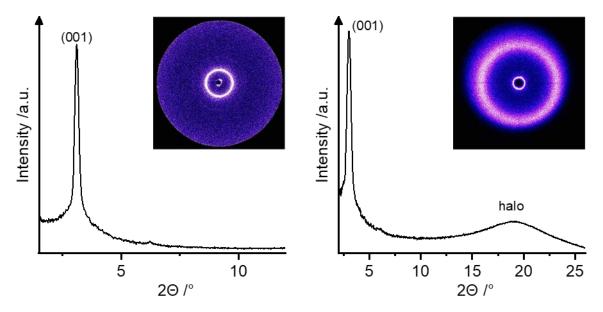

				$a / Å^2$
n	т	cmc / mol/L	$\gamma_{\rm min}/{ m mN/m}$	<i>a /</i> A-
10	10	$(1.2 \pm 0.1) \ 10^{-3}$	23.1 ± 0.3	58.6 ± 4.1
10	12	$(1.6 \pm 0.2) \ 10^{-4}$	22.5 ± 0.2	66.6 ± 10.1
10	14	$(3.4 \pm 0.4) \ 10^{-5}$	21.2 ± 0.3	51.2 ± 12.4
12	10	$(3.9 \pm 0.2) \ 10^{-4}$	23.2 ± 0.3	60.7 ± 3.2
14	10	$(1.3 \pm 0.2) \ 10^{-4}$	23.9 ± 0.2	55.0 ± 4.3
16	10	$(4.1 \pm 0.5) \ 10^{-5}$	25.4 ± 0.3	53.5 ± 4.5

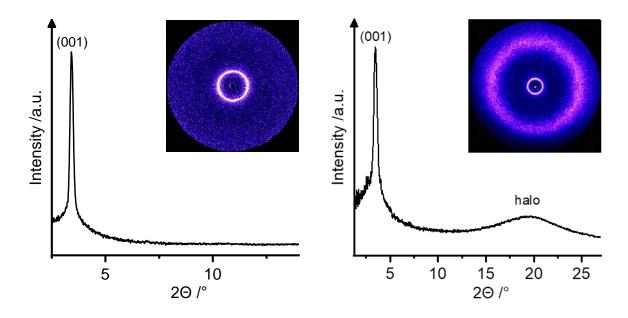
Table S3: Critical micelle concentration cmc, minimum surface tension γ_{\min} and minimum head group area a_{\min} for various salt-free imidazolium carboxylates [C_nmim][C_{m-1}COO] at T=25 °C.

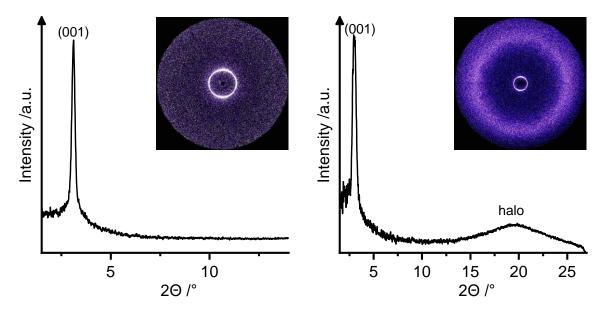

8. X-Ray data

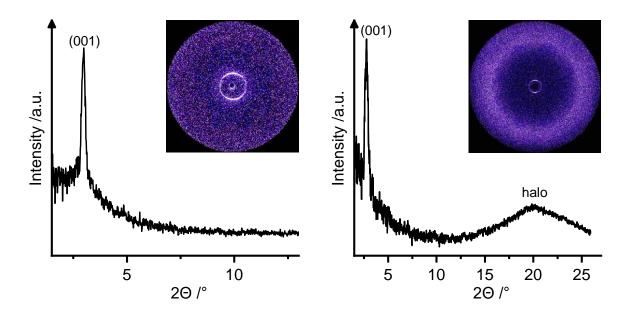
п	т	Mesophase	Layer thickness d/ Å exp. (calcd.)	Miller indices
10	10	SmA	26.5 (29.1)	(001)
12	10	SmA	28.4 (30.7)	(001)
14	10	SmA	28.5 (34.0)	(001)
16	10	SmA	29.2 (36.4)	(001)
10	12	SmA	27.4 (32.1)	(001)
12	12	SmA	28.4 (33.7)	(001)
14	12	SmA	29.7 (37.0)	(001)
16	12	SmA	34.5 (39.4)	(001)
10	14	SmA	30.2 (34.0)	(001)
12	14	SmA	29.9 (35.6)	(001)
14	14	SmA	32.1 (38.9)	(001)
16	14	SmA	32.9 (41.3)	(001)
10	16	SmA	29.8 (37.4)	(001)
12	16	SmA	34.3 (39.0)	(001)
14	16	SmA	35.9 (42.3)	(001)
16	16	SmA	37.8 (44.7)	(001)

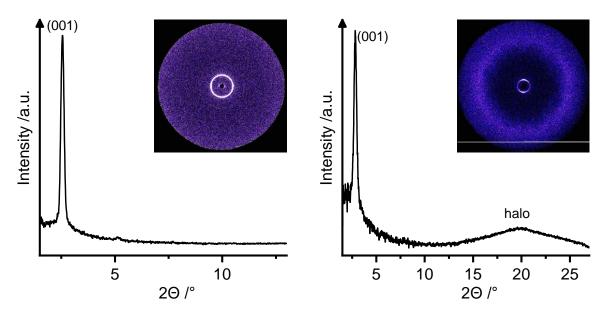

Table S4: XRD-data of imidazolium carboxylates $[C_nmim][C_{m-1}COO]$. Difference between experimental and calculated layer thickness *d* is caused by interdigitation.

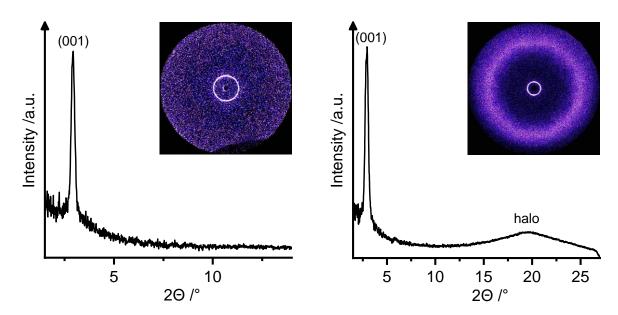

Figure S15: X-Ray scattering profile of [C10mim][C9COO] and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 78 °C.

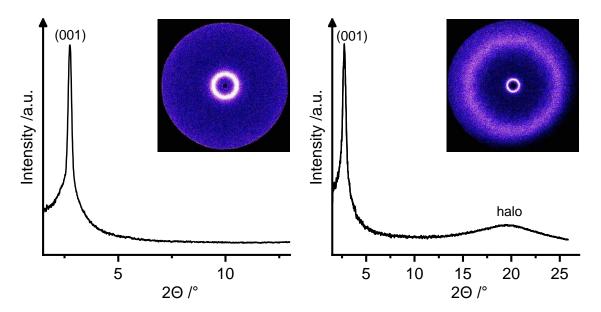

Figure S16: X-Ray scattering profile of $[C_{12}mim][C_9COO]$ and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 87 °C.

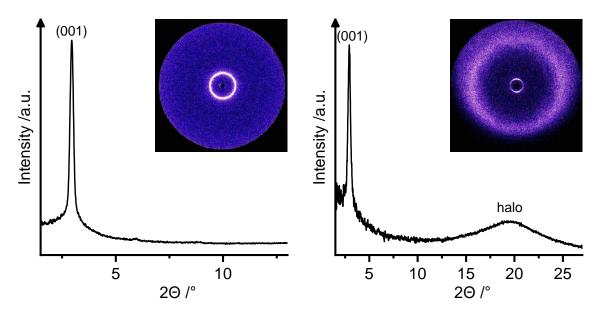

Figure S17: X-Ray scattering profile of $[C_{14}mim][C_9COO]$ and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 90 °C.

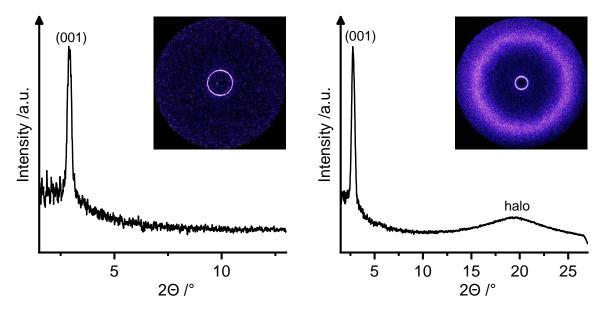

Figure S18: X-Ray scattering profile of [C₁₆mim][C₉COO] and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 100 °C.

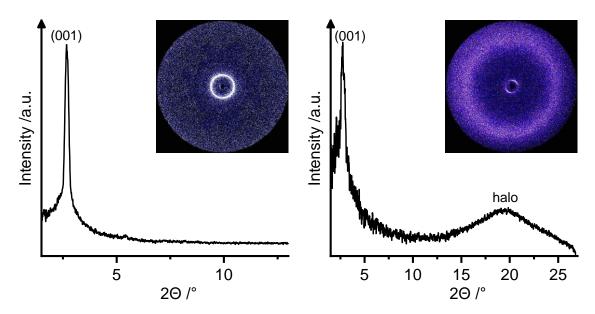

Figure S19: X-Ray scattering profile of [C₁₀mim][C₁₁COO] and corresponding diffraction pattern (SAXS (left) at 118 °C; WAXS (right)) at 128 °C.

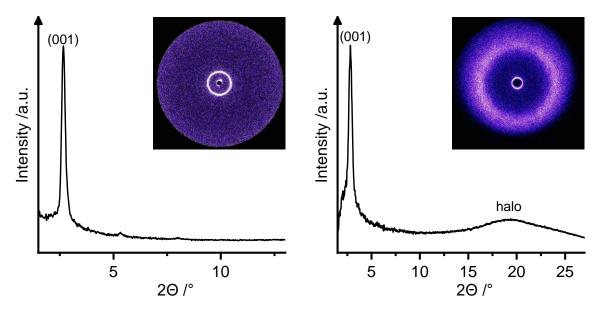

Figure S20: X-Ray scattering profile of [C₁₂mim][C₁₁COO] and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 87 °C.

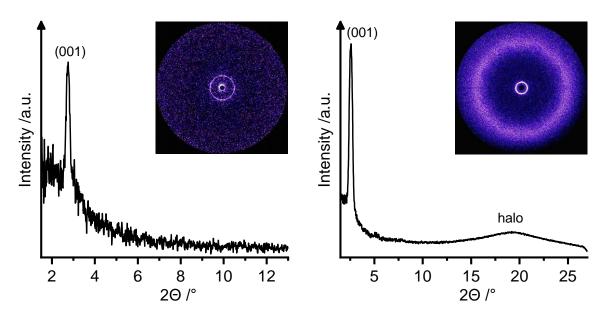

Figure S21: X-Ray scattering profile of [C₁₄mim][C₁₁COO] and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 97 °C.


Figure S22: X-Ray scattering profile of **[C16mim][C11COO]** and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 75 °C.


Figure S23: X-Ray scattering profile of $[C_{10}mim][C_{13}COO]$ and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 76 °C.


Figure S24: X-Ray scattering profile of [C₁₂mim][C₁₃COO] and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 83 °C.


Figure S25: X-Ray scattering profile of $[C_{14}mim][C_{13}COO]$ and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 74 °C.


Figure S26: X-Ray scattering profile of $[C_{16}mim][C_{13}COO]$ and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 95 °C.

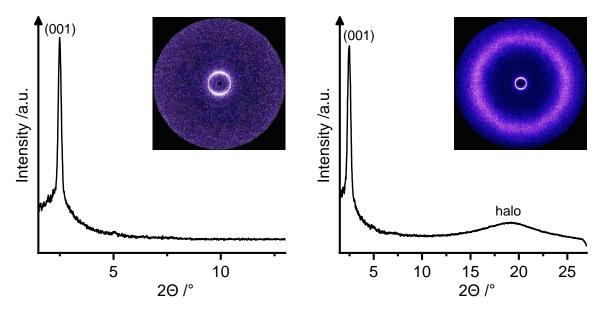

Figure S27: X-Ray scattering profile of $[C_{10}mim][C_{15}COO]$ and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 78 °C.

Figure S28: X-Ray scattering profile of [C₁₂mim][C₁₅COO] and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 87 °C.

Figure S29: X-Ray scattering profile of [C₁₄mim][C₁₅COO] and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 92 °C.

Figure S30: X-Ray scattering profile of [C₁₆mim][C₁₅COO] and corresponding diffraction pattern (SAXS (left); WAXS (right)) at 97 °C.

9. References

- 1 E. Alcalde, I. Dinarès, A. Ibáñez and N. Mesquida, Chem. Commun., 2011, 47, 3266.
- 2 A. Pal and S. Yadav, J. Mol. Liq., 2017, 229, 309–318.
- 3 H. Kumar and P. Sharma, J. Mol. Liq., 2021, **322**, 114851.
- 4 A. A. Salman, M. Tabandeh, T. Heidelberg, R. S. D. Hussen, H. M. Ali, *Carbohydr. Res.*, 2015, **412**, 28–33.
- 5 E. A. Simister, R. K. Thomas, J. Penfold, R. Aveyard, B. P. Binks, P. Cooper, P. D. I. Fletcher, J. R. Lu, and A. Sokolowski, *J. Phys. Chem.*, 1992, **96**, 1383–1388.