Supplementary Information

Automated Analysis of Soft Material Microindentation

H. E. Symons, A. Galanti, J. C. Surmon, R. S. Trask, S. Rochat, P. Gobbo

Supplementary Figure 1. Uniaxial compression testing of 7.5% polyacrylamide hydrogels. (a) Experimental setup and sample geometry, (b) linear fits of stress/strain data (to a maximum of 0.1 strain) for four hydrogel samples, and (c) resultant Young's moduli for each sample.

Supplementary Figure 2. Typical load-displacement curves obtained by the indentation of 2% agarose hydrogels in air (a), and with aqueous medium covering the sample (b).

Supplementary Figure 3. Box charts showing Young's modulus values and associated fitting errors obtained by indenting 2% agarose hydrogels to a depth of approximately 50 μ m at a speed of 10 μ m s⁻¹ with the stick-slip actuator whilst varying the wait time between actuation steps.

Supplementary Figure 4. Box charts showing Young's modulus values and associated fitting errors obtained by indenting 10% PEGDA hydrogels with a 300 μ m diameter spherical probe. (a) Effects of altering indentation depth, and (b) effects of altering the indentation speed.

Supplementary Figure 5. Typical data obtained by indentation of 1% agarose hydrogels. (a) Raw force-displacement data, and processed data with (b) full curve fitting and (c) AFA fitting.

Supplementary Figure 6. Typical data obtained by indentation of 2% agarose hydrogels. (a) Raw force-displacement data, and processed data with (b) full curve fitting and (c) AFA fitting.

Supplementary Figure 7. Typical data obtained by indentation of 0.5% alginate hydrogels. (a) Raw force-displacement data, and processed data with (b) full curve fitting and (c) AFA fitting.

Supplementary Figure 8. Typical data obtained by indentation of 1% alginate hydrogels. (a) Raw force-displacement data, and processed data with (b) full curve fitting and (c) AFA fitting.

Supplementary Figure 9. Typical data obtained by indentation of 10% PEGDA hydrogels. (a) Raw force-displacement data, and processed data with (b) full curve fitting and (c) AFA fitting.

Supplementary Figure 10. Typical data obtained by indentation of 5% polyacrylamide hydrogels. (a) Raw force-displacement data, and processed data with (b) full curve fitting and (c) AFA fitting.

Supplementary Figure 11. Typical data obtained by indentation of 10% polyacrylamide hydrogels. (a) Raw force-displacement data, and processed data with (b) full curve fitting and (c) AFA fitting.

Supplementary Figure 22. Uniaxial compression testing of 2% w/v agarose hydrogels. (a) Experimental setup and sample geometry, (b) linear fits of stress/strain data (to a maximum of 0.1 strain) for four hydrogel samples, and (c) resultant Young's moduli for each sample.

Supplementary Figure 13. (a) Contour plot of a 20x20 array measurement of a PEGDA hydrogel irradiated through a gradient mask. (b) Contour plot of selected region of (a) displaying an approximately linear gradient in Young's modulus along the Y axis.

Hydrogel	Concentration	Reported Modulus (kPa)	Method	Additional Reference information
Agarose	1% w/w	39	Compression	Removed from Normand, 2000 liquid medium
Agarose	1% w/v	13.5	Macroscale indentation	4 mm sphere Ahearne, 2005
Agarose	1%	10	Compression	Kock, 2013
Agarose	1%	3	Macroscale indentation	4.7 mm sphere, equilibrium Strange, 2012
Agarose	1%	11	Macroscale indentation	4.7 mm sphere, instantaneous Strange, 2012
Agarose	1% w/v	3.6	AFM indentatio n	5.3 µm sphere Markert, 2013
Agarose	2%	16	Compression	Kock, 2013
Agarose	2%	19	Macroscale indentation	4.7 mm sphere, equilibrium Strange, 2012
Agarose	2%	52	Macroscale indentation	4.7 mm sphere, instantaneous Strange, 2012
Agarose	2% w/v	45	AFM indentatio n	4 µm sphere Salerno, 2010
Agarose	2% w/v	10.6	AFM indentatio n	5.3 µm sphere Markert, 2013
Agarose	2%	17	Compression	Buckley, 2009
Agarose	2% w/v	9.3	AFM indentatio n	5 µm sphere Park, 2009
Agarose	2%	12	Compression	Mauck, 2000
Agarose	2%	63	Rheology	Aymard, 2001
Alginate	0.50%	3.6	AFM indentation	50 mM CaCl 2 , 5.3 μm sphere Markert, 2013
Alginate	0.50%	0.94	AFM indentation	48 mM CaCO 3 , 96 mM GDL Candiello, 2013
Alginate	0.50%	6.3	Compression	n Saturated Ca Dalheim, 2019

Supplementary Table 1. Reported modulus values included in the comparison in Figure 5.

Alginate	0.50%	1	Rheology	22 mM CaCl2	McKay, 2014
Alginate	1%	6	AFM indentation	50 mM CaCl ² , 5.3 μm sphere	Markert, 2013
Alginate	1%	20	Rheology	50 mM CaCl2	Banerjee, 2009
Alginate	1%	31.4	Compression	Saturated Ca	Dalheim, 2019
Alginate	1%	3.8	Compression	Saturated Ca	Aarstad, 2017
Alginate	1%	11.5	Compression	Saturated Ca	Aarstad, 2017
Alginate	1%	32.3	Compression	Saturated Ca	Aarstad, 2017
PEGDA	10% w/v	1.1	in AFM dentatio ⁿ	Mw: 3.4 kDa	Markert, 2013
PEGDA	10% w/v	64.4	Compression	Mw: 3.4 kDa	Lin, 2011
PEGDA	10% w	70	Compression	Mw: 8 kDa	Parlato, 2014
PEGDA	10% w/v	59.2	Tensile	Mw: 3.4 kDa	Lin, 2011
PEGDA	10%	30	Compression	Mw: 10 kDa	Liao, 2008
PEGDA	10% w/v	8	AFM indentation	Mw: 20 kDa	Nemir, 2010
PEGDA	10%	44.6	in AFM dentatio ⁿ	Mw: 575 Da	Corbin, 2012
PEGDMA	11% w/v	9.5	Rheology	Mw: 750 Da	Kolewe, 2019
Polyacrylamide	5.2% w/v	6.5	Tensile	2.91% w/w crosslinker	Engler, 2004
Polyacrylamide	5.2% w/v	5.8	AFM indentation	2.91% w/w crosslinker	Engler, 2004
Polyacrylamide	5.2% w/v	1.3	AFM indentation	3.33% w/w crosslinker	Markert, 2013
Polyacrylamide	5.2% w/v	4.47	AFM indentation	2.91% w/w crosslinker	Tse, 2010

Polyacrylamide	4% w/w	0.6	Microfluidic testing	2.6% w/w crosslinker	Wyss, 2010
Polyacrylamide	6% w/w	3.4	Microfluidic testing	2.6% w/w crosslinker	Wyss, 2010
Polyacrylamide	10% w/w	105	Microfluidic testing	2.6% w/w crosslinker	Wyss, 2010
Polyacrylamide	10.3% w/v	41.82	Macroscale indentation	2.93% w/w crosslinker	Ambrosi, 2009
Polyacrylamide	10.3% w/v	32	AFM indentation	2.91% w/w crosslinker	Wen, 2014
Polyacrylamide	10.3% w/v	2.2	AFM indentation	3.33% w/w crosslinker	Markert, 2013
Polyacrylamide	10.3% w/v	50	Micro indentation	2.91% w/w crosslinker, 30- 50 µm spheres	Hazeltine, 2012
Polyacrylamide	10.6% w/v	23.43	AFM indentation	2.20% w/w crosslinker	Tse, 2010