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Distribution of spring lengths and triangle ar-

eas:

The equilibrium lengths of the 270 springs in the network are taken to be

the lengths of the sides of the triangles in the triangulated fullerene and,

therefore, are not same. The springs can be divided into four groups, each

having a different value of equilibrium length leq (Fig.1). Similarly, since the

equilibrium lengths of all springs are not the same, the areas of all triangles

are also not identical and can be divided into three groups, each having a

different value of area aeq.

Supplementary Fig. 1: (a) Distribution of equilibrium lengths of different

springs. (b) Distribution of area of each of the triangles.

Integration algorithm
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where ∆ is the MD time step which we take to be much shorter than the

viscous damping time (mass/(friction coefficient)).

Solving equation 1, we get the following expressions for updating the

velocity and position of vertex K:
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In general,
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where n is the number of MD time steps.

The equation for the position can be written as,

r⃗k(t) = r⃗k(0) +

∫ t

0

v⃗k(t
′)dt′

At t = ∆,

r⃗k(∆) = r⃗k(0) + ∆ v⃗k(∆/2)

In other words,

r⃗k((n+ 1)∆) = r⃗k(n∆) +∆ v⃗k ((n+
1

2
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We are using equation 3 and 4 for updating velocities and positions of

the vertices

Relaxation to steady state:

Beginning with a network in equilibrium in the absence of hydrostatic pres-

sure, at time, t = 0, we suddenly switch on hydrostatic pressure by changing

p0 from 0 to 0.1. With the simulation parameters used in this paper, it takes

about 40 − 50 time units to reach a steady state characterized by a new

pleatea value of the total surface area A (Fig. 2). Increasing p0 from 0 to a

higher value of pressure, increases the steady state value of the surface area

but decreases the relaxation time compared to the values of shown in Fig. 2.
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Supplementary Fig. 2: (a) The total surface area A(t) of the network plotted

as a function of time following a step-like increase of hydrostatic pressure

from p0 = 0 to 0.1.

Single excitation dynamics: effect of hydro-

static pressure:

The effect of hydrostatic pressure on excitation and relaxation dynamics

of a single spring and total surface area of the system can be observed by

comparing the steady state results for p0 = 0.05 and 0.1. Since in steady state

with p0 = 0.1 the network is more inflated than for p0 = 0.05, the elastic

energy stored in the springs is higher as well in case of p0 = 0.1. Once a

single spring is excited, l̄ reaches its minimum value faster and the maximal

contraction of the spring is higher in the p0 = 0.1 than in the p0 = 0.05

case. Since the deformation of the spring is opposed by network forces that

increase with the inflation of the network, the excited spring relaxes faster to

its steady state value in the p0 = 0.1 than in the p0 = 0.05 case (Fig. 3(a)).

(b) Faster excitation and relaxation dynamics at higher hydrostatic pressure

can also be observed in the normalized total surface area Ā versus time plot

(Fig. 3(b)).
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Supplementary Fig. 3: (a) The normalized length l̄ of an excited spring and

(b) the normalized total area Ā of the network, are plotted as a function of

time following the excitation, for p0 = 0.05 (black curve) and 0.1 (red curve).

The relaxation time of the spring is tr = 1.

Single excitation dynamics: Effect of spring

constant K and mass m

Supplementary Fig. 4: (a) The normalized length l̄ of an excited spring

and (b) the normalized total area (Ā) as a function of time for different

combinations of spring constants K and mass m: K = 1,m = 1 (black);

K = 1,m = 2 (red) and K=2, m=1 (green).

Distribution of number of excited bonds dur-

ing non-periodic excitations:

During non-periodic excitations, the time interval between two consecutive

excitations is chosen from an uniform distribution with a mean of 1 time
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unit. In this case the number of excitations simultaneously present in the

network, fluctuates in time. In Fig. 4 we plot the probability distribution of

the number of simultaneous excitations (events were accumulated during the

measurement time). Both the peak and the mean of the distribution occur

at 1, corresponding to a single excitation).

Supplementary Fig. 5: Distribution of number of excited springs present in

the system at a particular instant of time during non-periodic excitations

without A-p feedback.

Distribution of normalized areas of triangles:

In Supplementary Fig. 6 we plot the PDFs of normalized area of triangles (ā)

for the case of non-periodic excitations, with no total area-pressure feedback

and with negative and positive feedback. The three distributions have similar

widths and tails towards lower values of ā. The peak of the positive feedback

distribution is shifted to lower area compared to the other two.
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Supplementary Fig. 6: Distribution of normalized area of triangles (ā) in case

of without feedback (black), negative feedback (red) and positive feedback

(green).

Scatter plots of areas of triangles:

In Fig. 7 we present scatter plots of the instantaneous values of areas of

two (a) neighboring and (b) distant triangles. While there are nearly no

correlation between distant triangles (see Fig. 7(b)), negative correlations

are observed between triangles that share a common vertex, in Fig. 7(a)

Supplementary Fig. 7: Scatter plots of areas of two neighboring (a) and

distant (b) triangles.
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Supplementary movie 1

The movie shows the active excitations in the network when the excitations

are introduced non-periodically in the network.
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