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1 Quantification of sample aging
A rheometric measure of the rate of sample aging is given by the mutation time 𝜏𝑚𝑢 defined as

𝜏𝑚𝑢 ≡
(︂

1

𝐺*
𝑑𝐺*

𝑑𝑡𝑠

)︂−1

=

(︂
𝑑 ln𝐺*

𝑑𝑡𝑠

)︂−1

, (S1)

where 𝐺* ≡
√︀
𝐺′2 + 𝐺′′2 denotes the complex modulus and 𝑡𝑠 the sample time since the initiation of

gelation.S1 For each experiment, starting from 𝑡𝑠 = 0 s we perform (1) a time sweep with a small oscillatory
strain amplitude 𝛾0 in the linear deformation regime (𝛾0 = 4 × 10−3 and 8 × 10−2 for the strain-softening
and the strain-hardening gel, respectively) at a frequency 𝜔 = 6.3 rad s−1 for 1800 s, (2) a frequency sweep
at the same strain amplitude 𝛾0 for approximately 400 s, and (3) the creep test. By fitting a linear function
to ln𝐺*(𝑡) obtained during the last 100 or 200 s of the time sweep step, as shown in Fig. S1, we estimate
the mutation times 𝜏𝑚𝑢 to be (4.37 ± 0.36) × 103 s and (1.34 ± 0.70) × 104 s for the strain-softening and
the strain-hardening gel, respectively. We underscore that these values are conservative estimates of the
mutation time 𝜏𝑚𝑢. As ln𝐺*/𝑑𝑡𝑠 keeps decreasing with 𝑡𝑠, the true value of 𝜏𝑚𝑢 at the beginning of the
creep step that starts ∼ 400 s after the end of the time sweep is likely greater than the values obtained here.

The extent of sample aging during a measurement can be quantified as the mutation number 𝑁𝑚𝑢 ≡
∆𝑡/𝜏𝑚𝑢, where ∆𝑡 denotes the duration of the experiment.S1 Effects of aging on the yield precursor 𝛾̇ ∼ 𝑡−0.6
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Fig. S1: Temporal change in the complex modulus 𝐺* for a frequency 𝜔 = 6.3 rad s−1 of the strain-softening
(red squares) and the strain-hardening (blue diamonds) gels. The mutation time 𝜏𝑚𝑢 is obtained from a
linear fit to the last 100 s (strain-softening) or 200 s (strain-hardening) of the data sets.
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can be neglected if 𝑁𝑚𝑢 ≪ 1, where ∆𝑡 is defined as the end time of the yield precursor, corresponding
to the time at which the strain 𝛾 reaches 0.5 and 1.0 for the strain-softening and the strain-hardening
gel, respectively. For the strain-softening gel, 𝑁𝑚𝑢 is lower than 0.10, while for the strain-hardening gel,
𝑁𝑚𝑢 < 0.04. A frequently accepted threshold value of 𝑁𝑚𝑢 below which aging can be neglected is 0.15,S1

which justifies our assumption that aging does not affect the yield precursor during primary creep. For the
longest experiments presented in Fig. 2 of the main text, however, yield is not observed until 𝑁𝑚𝑢 ≃ 1.21 and
0.33 for the strain-softening (at the applied stress 𝜎0 = 1.5 Pa) and the strain-hardening gel (at 𝜎0 = 1.0 Pa),
respectively. In these two experiments, therefore, aging of the gels likely affects the later-stage deformations
after the power law 𝛾̇ ∼ 𝑡−0.6, suppressing yield even at large strains 𝛾.

2 Full ranges of the strain 𝛾(𝑡) and the shear rate 𝛾̇(𝑡)

The full ranges of the strain 𝛾(𝑡) and the shear rate 𝛾̇(𝑡) of the strain-softening and the strain-hardening
gels are shown in Fig. S2(A to D) for a particle volume fraction 𝜑 = 5.0%. The shear rate 𝛾̇(𝑡) after delayed
yielding approaches a constant value for fluidized samples.
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Fig. S2: (A and B) Strain 𝛾(𝑡) and (C and D) shear rate 𝛾̇(𝑡) of (A and C) the strain-softening and (B and
D) the strain-hardening gels for a particle volume fraction 𝜑 = 5.0% during creep under different stresses
𝜎0. Data points of 𝛾̇ at early times dominated by the instrument inertia are marked by open symbols.
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3 Calculation of the dimensionless shear rate Γ̇(𝑛)
in the one-dimensional model

In our one-dimensional (1D) model for the creep deformation of colloidal gels, the macroscopic strain Γ
at dimensionless time 𝑛 is obtained as Γ(𝑛) = 𝑁𝑝(𝑛)Γ𝑙/𝑁 , where 𝑁𝑝 denotes the number of plastically
deformed mesoscopic units, 𝑁 the total number of mesoscopic units in the system, and Γ𝑙 the local strain
of each plastically deformed mesoscopic unit. We assume Γ𝑙 = 1 for all units such that Γ is equal to the
fraction of yielded units. Therefore, Γ = 1 when all units are plastically deformed. We let each unit yield
once at most.

Adopting the approach presented in refs. S2,S3, the dimensionless local yield stress Σ𝑦 of each mesoscopic
unit is sampled from a Weibull distribution, whose probability density function 𝑓𝑤𝑏 can be expressed as

𝑓𝑤𝑏(Σ𝑦) =
𝛽

Σ*
𝑦

(︂
Σ𝑦

Σ*
𝑦

)︂𝛽−1

exp

[︃
−
(︂

Σ𝑦

Σ*
𝑦

)︂𝛽
]︃
, Σ𝑦 ∈ [0,∞), (S2)

where 𝛽 denotes the shape parameter and Σ*
𝑦 the scale parameter. Numerical values of the local yield stress

Σ𝑦 are insignificant, and hence we assume a scale parameter Σ*
𝑦 = 1. The larger the shape parameter 𝛽, the

sharper 𝑓𝑤𝑏 is around Σ𝑦 = Σ*
𝑦 = 1, as shown in Fig. S3; the local yield stresses of different units are more

narrowly distributed around Σ*
𝑦 = 1 for larger 𝛽.

Upon the application of a constant dimensionless stress Σ0 at 𝑛 = 0, every unit with a local yield stress
Σ𝑦 < Σ0 plastically deforms. Given a sufficiently large number of units 𝑁 , the resultant initial macroscopic
strain Γ0 is the same as the fraction of the units with Σ𝑦 < Σ0, or Γ0 = 1 − exp

(︁
−Σ0

𝛽
)︁
, which is equal to

the cumulative distribution function 𝐹𝑤𝑏(Σ𝑦) of the local yield stress evaluated at Σ𝑦 = Σ0.
For each unyielded unit, the probability of plastic deformation over a unit time ∆𝑛 = 1 is assumed to be

𝑝(Σ𝑦,Σ0) = 𝜈 exp

[︂
− (Σ𝑦 − Σ0)𝑉𝑎

𝑘𝐵𝑇

]︂
, (S3)

where 𝜈 = 1 denotes the attempt frequency, 𝑉𝑎 the dimensionless activation volume, and 𝑘𝐵𝑇 the dimension-
less thermal energy. In the absence of spatiotemporal correlations, the probability of an arbitrary mesoscopic
unit with Σ𝑦 > Σ0 being plastically deformed at time 𝑛 ≥ 1 is 𝑝1 (1 − 𝑝)

𝑛−1. Thus, the averaged probability
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Fig. S3: Probability density functions of the Weibull distribution 𝑓𝑤𝑏 for a scale parameter Σ*
𝑦 = 1 and

shape parameters 𝛽 = 2, 3, 4, and 5.
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of local yield at 𝑛 ≥ 1 for a mesoscopic unit with Σ𝑦 > Σ0 can be expressed as

𝑃 (𝑛,Σ0) =

∫︀∞
Σ0

𝑝(Σ𝑦,Σ0) [1 − 𝑝(Σ𝑦,Σ0)]
𝑛−1

𝑓𝑤𝑏(Σ𝑦) 𝑑Σ𝑦∫︀∞
Σ0

𝑓𝑤𝑏(Σ𝑦) 𝑑Σ𝑦

=

∫︀∞
Σ0

𝑝(Σ𝑦,Σ0) [1 − 𝑝(Σ𝑦,Σ0)]
𝑛−1

𝑓𝑤𝑏(Σ𝑦) 𝑑Σ𝑦

1 − 𝐹𝑤𝑏(Σ0)
. (S4)

The average macroscopic shear rate at 𝑛 ≥ 1 is equal to the number of units with Σ𝑦 > Σ0 times the
macroscopic strain increment due to a single plastic event, multiplied by 𝑃 (𝑛,Σ0):

Γ̇(𝑛,Σ0) = 𝑁 [1 − 𝐹𝑤𝑏(Σ0)] × Γ𝑙

𝑁
× 𝑃 (𝑛,Σ0)

=

∫︁ ∞

Σ0

𝑝(Σ𝑦,Σ0) [1 − 𝑝(Σ𝑦,Σ0)]
𝑛−1

𝑓𝑤𝑏(Σ𝑦) 𝑑Σ𝑦. (S5)

Finally, the average total strain at 𝑛 ≥ 1 can be obtained from

Γ(𝑛,Σ0) = Γ0(Σ0) +

𝑛∑︁
𝑗=1

Γ̇(𝑗,Σ0). (S6)
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4 Stress independence of power-law exponents for different model
parameters

In the main text, the shear rate Γ̇ in the model is shown to exhibit a power law Γ̇ ∼ 𝑛−0.6, independent of
the applied stress Σ0 when the strain falls within the range of Γ = 0.01−0.04 for a Weibull shape parameter
𝛽 = 3 and a thermal energy density 𝑘𝐵𝑇/𝑉𝑎 = 0.06. Altering the values of 𝛽 or 𝑘𝐵𝑇/𝑉𝑎 changes the power-
law exponent that best describes the temporal decrease in the shear rate Γ̇(𝑛) in a given strain range. Yet,
the stress independence of an exponent holds true regardless of the parameter values, as shown in Fig. S4(A
and B).

A larger shape parameter 𝛽 corresponds to a narrower distribution of the local yield stress Σ𝑦 around
the scale parameter Σ*

𝑦 = 1, as displayed in Fig. S3, and thus leads to a reduced fraction of mesoscopic
units whose local yield stresses are close to the applied stress Σ0 ≪ 1. The scarcity of readily deformable
units renders plastic events less likely from the outset, partially obscuring the effect of statistical hardening.
Therefore, a larger 𝛽 results in a smaller magnitude of the power-law exponent in a fixed strain range
(Fig. S4(A)). A smaller thermal energy density 𝑘𝐵𝑇/𝑉𝑎 strengthens the effect of statistical hardening by
decreasing the probability of a plastic event for every unyielded unit after the initial deformation. A smaller
𝑘𝐵𝑇/𝑉𝑎 hence induces a larger magnitude of the power-law exponent in a fixed strain range (Fig. S4(B)).
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Fig. S4: Strain Γ and shear rate Γ̇ of the 1D model (lines) and the 2D model (circles) under various
stresses Σ0 for different Weibull shape parameters 𝛽 and thermal energy densities 𝑘𝐵𝑇/𝑉𝑎. Triangles and
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the highlighted strain range Γ = 0.01 − 0.04. For the 1D model, the results are exact averaged quantities
numerically evaluated by Eqs. (S5) and (S6). For the 2D model, the results are obtained from simulations
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5 Model shear rate Γ̇(𝑛) for different distributions
The same integral expression in Eq. (S5) can be used for other distributions than the Weibull distribution,
except that 𝑓𝑤𝑏(Σ𝑦) needs to be replaced with the appropriate probability density function. Different dis-
tributions of the local yield stress lead to slightly different behaviors in the model in terms of the shear rate
Γ̇(𝑛).

5.1 Normal distribution
The normal (Gaussian) distribution gives rise to a near power-law creep with its exponent dependent on the
strain, as observed for the Weibull distribution. The average shear rate Γ̇(𝑛) in Eq. (S5) can be numerically
calculated using the probability density function:

𝑓𝐺(Σ𝑦) =
1

𝑍𝑆
√

2𝜋
exp

[︃
−1

2

(︂
Σ𝑦 − 𝜇

𝑆

)︂2
]︃
, Σ𝑦 ∈ [0,∞), (S7)

where
𝑍 ≡

∫︁ ∞

0

𝑓𝐺(Σ𝑦) 𝑑Σ𝑦 (S8)

denotes the normalization parameter, 𝜇 the mean, and 𝑆 the standard deviation. The normalization param-
eter is needed as we consider a distribution truncated at Σ𝑦 = 0, such that 𝑓𝐺 is defined only for Σ𝑦 ≥ 0. For
the choice of 𝜇 = 1 and 𝑆 = 0.3, the shear rate decrease can be described as Γ̇ ∼ 𝑛−0.63 independent of the
applied stress Σ0, when the strain Γ falls within the range 0.01−0.04, as shown in Fig. S5(A). The similarity
between the normal and the Weibull distributions of the local yield threshold attests to the generality of the
dependence of the power-law exponent on the total strain.
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5.2 Exponential distribution
For an exponential distribution of the local yield stress, an analytical expression for Γ̇(𝑛) can be obtained.
The probability density function of an exponential distribution can be expressed as

𝑓𝑒𝑥𝑝(Σ𝑦) =
1

𝜇
exp

(︂
−Σ𝑦

𝜇

)︂
, Σ𝑦 ∈ [0,∞). (S9)

We derive a closed-form expression for the shear rate by first applying the binomial theorem to the integrand
in

Γ̇(𝑛,Σ0) =

∫︁ ∞

Σ0

𝑝 (1 − 𝑝)
𝑛−1

𝑓𝑒𝑥𝑝 𝑑Σ𝑦, (S10)

where

𝑝 (1 − 𝑝)
𝑛−1

= 𝑝

[︂(︂
𝑛− 1

0

)︂
𝑝0 −

(︂
𝑛− 1

1

)︂
𝑝1 +

(︂
𝑛− 1

2

)︂
𝑝2 − · · · + (−1)

𝑛−1

(︂
𝑛− 1

𝑛− 1

)︂
𝑝𝑛−1

]︂
=

(︂
𝑛− 1

0

)︂
𝑝−

(︂
𝑛− 1

1

)︂
𝑝2 +

(︂
𝑛− 1

2

)︂
𝑝3 − · · · + (−1)

𝑛−1

(︂
𝑛− 1

𝑛− 1

)︂
𝑝𝑛. (S11)

Substituting 𝜉 ≡ 𝑘𝐵𝑇/𝑉𝑎, such that

𝑝 = exp

[︂
−Σ𝑦 − Σ0

𝜉

]︂
, (S12)

the integral can be calculated for each term in Eq. (S10) after the expansion. For the first term,∫︁ ∞

Σ0

(︂
𝑛− 1

0

)︂
𝑝𝑓𝑒𝑥𝑝 𝑑Σ𝑦 =

(︂
𝑛− 1

0

)︂
1

𝜇
exp

(︂
Σ0

𝜉

)︂∫︁ ∞

Σ0

exp

[︂
−
(︂

1

𝜉
+

1

𝜇

)︂]︂
𝑑Σ𝑦

=

(︂
𝑛− 1

0

)︂
𝑋1

𝜇
exp

(︂
Σ0

𝜉

)︂
exp

(︂
−Σ0

𝑋1

)︂
=

(︂
𝑛− 1

0

)︂
𝑋1

𝜇
exp

(︂
−Σ0

𝜇

)︂
, (S13)

where
1

𝑋𝑞
≡ 𝑞

𝜉
+

1

𝜇
, (S14)

for a positive integer 𝑞. For the second term,∫︁ ∞

Σ0

−
(︂
𝑛− 1

1

)︂
𝑝2𝑓𝑒𝑥𝑝 𝑑Σ𝑦 = −

(︂
𝑛− 1

1

)︂
1

𝜇
exp

(︂
2Σ0

𝜉

)︂∫︁ ∞

Σ0

exp

[︂
−
(︂

2

𝜉
+

1

𝜇

)︂
Σ𝑦

]︂
𝑑Σ𝑦

= −
(︂
𝑛− 1

1

)︂
𝑋2

𝜇
exp

(︂
2Σ0

𝜉

)︂
exp

(︂
−Σ0

𝑋2

)︂
= −

(︂
𝑛− 1

1

)︂
𝑋2

𝜇
exp

(︂
−Σ0

𝜇

)︂
. (S15)

Evaluating the integrals of all the terms yields

Γ̇(𝑛,Σ0) =
1

𝜇
exp

(︂
−Σ0

𝜇

)︂[︂(︂
𝑛− 1

0

)︂
𝑋1 −

(︂
𝑛− 1

1

)︂
𝑋2 + · · · + (−1)

𝑛−1

(︂
𝑛− 1

𝑛− 1

)︂
𝑋𝑛

]︂
. (S16)

For 𝜇𝑞 ≫ 𝜉, which holds true for relevant domains of the parameters that enable prolonged deformation,

𝑋𝑞 =
𝜇𝜉

𝜇𝑞 + 𝜉
≃ 𝜇𝜉

𝜇𝑞
=

𝜉

𝑞
. (S17)

7



The shear rate can be approximated as

Γ̇(𝑛,Σ0) ≃ 𝜉

𝜇
exp

(︂
−Σ0

𝜇

)︂[︂(︂
𝑛− 1

0

)︂
1

1
−

(︂
𝑛− 1

1

)︂
1

2
+ · · · + (−1)

𝑛−1

(︂
𝑛− 1

𝑛− 1

)︂
1

𝑛

]︂
≃ 𝜉

𝜇
exp

(︂
−Σ0

𝜇

)︂ 𝑛−1∑︁
𝑚=0

(−1)
𝑚

𝑚 + 1

(︂
𝑛− 1

𝑚

)︂
. (S18)

It can be shown, as in ref. S4, that

𝑛−1∑︁
𝑚=0

(−1)
𝑚

𝑚 + 1

(︂
𝑛− 1

𝑚

)︂
=

1

(𝑛− 1) + 1
= 𝑛−1, (S19)

which leads to
Γ̇(𝑛,Σ0) ≃ 𝑘𝐵𝑇

𝑉𝑎𝜇
exp

(︂
−Σ0

𝜇

)︂
𝑛−1. (S20)

This result indicates that an exponential distribution of the local yield stress in our model induces a log-
arithmic creep Γ ∼ ln𝑛, as shown in Fig. S5(B), during which a single power-law exponent (−1) of Γ̇(𝑛)
satisfactorily describes the viscoplastic deformation for all accessible ranges of the strain Γ(𝑛).

5.3 Uniform distribution
An approximate analytical expression for Γ̇(𝑛) can be obtained also for a uniform distribution of the local
yield stress. The probability density function of a uniform distribution can be expressed as

𝑓𝑢𝑛𝑖(Σ𝑦) =

{︂
1/𝑌 if 0 ≤ Σ𝑦 ≤ 𝑌
0 otherwise (S21)

where 𝑌 denotes the maximum local yield stress. Term-by-term integration of the integral

Γ̇(𝑛,Σ0) =

∫︁ ∞

Σ0

𝑝 (1 − 𝑝)
𝑛−1

𝑓𝑢𝑛𝑖 𝑑Σ𝑦, (S22)

where 𝑝 = exp [− (Σ𝑦 − Σ0)/𝜉)] and 𝜉 ≡ 𝑘𝐵𝑇/𝑉𝑎, can be performed after the binomial expansion, as shown
for the exponential distribution. The first term is∫︁ ∞

Σ0

(︂
𝑛− 1

0

)︂
𝑝𝑓𝑢𝑛𝑖 𝑑Σ𝑦 =

(︂
𝑛− 1

0

)︂
1

𝑌
exp

(︂
Σ0

𝜉

)︂∫︁ 𝑌

Σ0

exp

(︂
−Σ𝑦

𝜉

)︂
𝑑Σ𝑦

= −
(︂
𝑛− 1

0

)︂
𝜉

𝑌
exp

(︂
Σ0

𝜉

)︂[︂
exp

(︂
−𝑌

𝜉

)︂
− exp

(︂
−Σ0

𝜉

)︂]︂
= − 𝜉

𝑌
exp

(︂
Σ0

𝜉

)︂
exp

(︂
−𝑌

𝜉

)︂
+

𝜉

𝑌
. (S23)

The second term is∫︁ ∞

Σ0

−
(︂
𝑛− 1

1

)︂
𝑝2𝑓𝑢𝑛𝑖 𝑑Σ𝑦 = −

(︂
𝑛− 1

1

)︂
1

𝑌
exp

(︂
2Σ0

𝜉

)︂∫︁ 𝑌

Σ0

exp

(︂
−2Σ𝑦

𝜉

)︂
𝑑Σ𝑦

=
1

2

(︂
𝑛− 1

1

)︂
𝜉

𝑌
exp

(︂
2Σ0

𝜉

)︂[︂
exp

(︂
−2𝑌

𝜉

)︂
− exp

(︂
−2Σ0

𝜉

)︂]︂
=

1

2

(︂
𝑛− 1

1

)︂
𝜉

𝑌
exp

(︂
2Σ0

𝜉

)︂
exp

(︂
−2𝑌

𝜉

)︂
− 1

2

(︂
𝑛− 1

1

)︂
𝜉

𝑌
. (S24)
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Evaluating all the terms and rearranging the resulting series leads to

Γ̇(𝑛,Σ0)

=
𝜉

𝑌

[︂
− exp

(︂
−𝑌 − Σ0

𝜉

)︂
+

1

2

(︂
𝑛− 1

1

)︂
exp

(︂
−2 (𝑌 − Σ0)

𝜉

)︂
− · · · +

(−1)
𝑛

𝑛

(︂
𝑛− 1

𝑛− 1

)︂
exp

(︂
−𝑛 (𝑌 − Σ0)

𝜉

)︂]︂
+

𝜉

𝑌

[︃
1 − 1

2

(︂
𝑛− 1

1

)︂
+

1

3

(︂
𝑛− 1

2

)︂
− · · · +

(−1)
𝑛−1

𝑛

(︂
𝑛− 1

𝑛− 1

)︂]︃

=
𝜉

𝑌

{︃
𝑛−1∑︁
𝑚=0

[︃
(−1)

𝑚+1

𝑚 + 1

(︂
𝑛− 1

𝑚

)︂
exp

(︂
− (𝑚 + 1)(𝑌 − Σ0)

𝜉

)︂]︃
+

𝑛−1∑︁
𝑙=0

(−1)
𝑙

𝑙 + 1

(︂
𝑛− 1

𝑙

)︂}︃
. (S25)

Given 𝑌 ≫ Σ0 and 𝜉 ≪ 1, which hold true for the relevant ranges of the parameters that enable prolonged
deformation, the term in the second summation dominates its counterpart in the first summation for any
𝑚 = 𝑙 ≥ 1. Thus, the expression simplifies to

Γ̇(𝑛,Σ0) ≃ 𝑘𝐵𝑇

𝑉𝑎𝑌
𝑛−1. (S26)

This result indicates that a uniform distribution of the local yield stress, similar to an exponential distri-
bution, leads to a logarithmic creep Γ ∼ ln𝑛, as shown in Fig. S5(C), during which a single power-law
exponent (−1) of Γ̇(𝑛) satisfactorily describes the viscoplastic deformation for all accessible ranges of the
strain Γ(𝑛).
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6 Model elapsed time 𝜏𝑝 vs. stress Σ0 for different distributions
As reported in the main text, the Weibull distribution of the local yield stress results in the exponential
dependence of the elapsed time 𝜏𝑝 to reach an arbitrary value of strain Γ𝑝 on the applied stress Σ0. We find
that such exponential dependence likewise results from the normal, exponential, and uniform distributions.

6.1 Normal distribution
We numerically calculate the elapsed time 𝜏𝑝 for the model to reach an arbitrary strain Γ𝑝 with a normal
distribution of the local yield stress, for 𝜇 = 1, 𝑆 = 0.3, and 𝑘𝐵𝑇/𝑉𝑎 = 0.06. As shown in Fig. S6(A), the
elapsed time exhibits an exponential dependence 𝜏𝑝 ∼ exp (−Σ0𝑉𝑎/𝑘𝐵𝑇 ), regardless of the value of Γ𝑝.

6.2 Exponential distribution
For the exponential distribution of the local yield stress Σ𝑦, the exponential dependence of the elapsed time
𝜏𝑝 on the stress Σ0 can be derived analytically. Assuming 𝜏𝑝 is a positive integer, substituting Γ = Γ𝑝 into
Eq. (S6) and rearranging the equation leads to

𝜏𝑝∑︁
𝑗=1

Γ̇(𝑗,Σ0) = Γ𝑝 − Γ0(Σ0), (S27)

where the left-hand side can be expressed as

𝜏𝑝∑︁
𝑗=1

Γ̇(𝑗,Σ0) =

𝜏𝑝∑︁
𝑗=1

∫︁ ∞

Σ0

𝑝 [1 − 𝑝]
𝑗−1

𝑓𝑒𝑥𝑝 𝑑Σ𝑦

=

∫︁ ∞

Σ0

𝑝𝑓𝑒𝑥𝑝

𝜏𝑝∑︁
𝑗=1

[︁
(1 − 𝑝)

𝑗−1
]︁
𝑑Σ𝑦. (S28)

Simplifying the geometric series in the integrand,

𝜏𝑝∑︁
𝑗=1

[︁
(1 − 𝑝)

𝑗−1
]︁

=
1 − (1 − 𝑝)

𝜏𝑝

𝑝
, (S29)
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Fig. S6: Elapsed time 𝜏𝑝 for the model to reach arbitrary total strains Γ𝑝 as a function of stress Σ0 for
(A) the normal distribution, (B) the exponential distribution, and (C) the uniform distribution of local yield
stress Σ𝑦. Purple lines denote numerical results and orange dashed lines in (B and C) denote analytical
results.
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Eq. (S27) can be expressed as∫︁ ∞

Σ0

[1 − (1 − 𝑝)
𝜏𝑝 ] 𝑓𝑒𝑥𝑝 𝑑Σ𝑦 = Γ𝑝 − Γ0(Σ0)

⇒
∫︁ ∞

Σ0

𝑓𝑒𝑥𝑝 𝑑Σ𝑦 −
∫︁ ∞

Σ0

(1 − 𝑝)
𝜏𝑝 𝑓𝑒𝑥𝑝 𝑑Σ𝑦 = Γ𝑝 − Γ0(Σ0)

⇒
∫︁ ∞

Σ0

(1 − 𝑝)
𝜏𝑝 𝑓𝑒𝑥𝑝 𝑑Σ𝑦 = 1 − Γ𝑝, (S30)

since Γ0 =
∫︀ Σ0

0
𝑓 𝑑Σ𝑦. Therefore, an expression for 𝜏𝑝 can be found by solving Eq. (S30). After the binomial

expansion,

(1 − 𝑝)
𝜏𝑝 =

(︂
𝜏𝑝
0

)︂
𝑝0 −

(︂
𝜏𝑝
1

)︂
𝑝1 +

(︂
𝜏𝑝
2

)︂
𝑝2 − · · · + (−1)𝜏𝑝

(︂
𝜏𝑝
𝜏𝑝

)︂
𝑝𝜏𝑝 , (S31)

the integral can be evaluated term-by-term. The first term is∫︁ ∞

Σ0

𝑓𝑒𝑥𝑝 𝑑Σ𝑦 = exp

(︂
−Σ0

𝜇

)︂
. (S32)

The second term is ∫︁ ∞

Σ0

−
(︂
𝜏𝑝
1

)︂
𝑝𝑓𝑒𝑥𝑝 𝑑Σ𝑦 = − 1

𝜇

(︂
𝜏𝑝
1

)︂
exp

(︂
Σ0

𝜉

)︂∫︁ ∞

Σ0

exp

(︂
−Σ𝑦

𝑋1

)︂
𝑑Σ𝑦

= − 1

𝜇

(︂
𝜏𝑝
1

)︂
𝑋1 exp

(︂
−Σ0

𝜇

)︂
, (S33)

where 𝜉 ≡ 𝑘𝐵𝑇/𝑉𝑎 and 1/𝑋𝑞 ≡ 𝑞/𝜉 + 1/𝜇, for a positive integer 𝑞. The third term is∫︁ ∞

Σ0

(︂
𝜏𝑝
2

)︂
𝑝2𝑓𝑒𝑥𝑝 𝑑Σ𝑦 =

1

𝜇

(︂
𝜏𝑝
2

)︂
𝑋2 exp

(︂
−Σ0

𝜇

)︂
. (S34)

The left-hand side of Eq. (S30) is equal to a series∫︁ ∞

Σ0

(1 − 𝑝)
𝜏𝑝 𝑓𝑒𝑥𝑝 𝑑Σ𝑦

= exp

(︂
−Σ0

𝜇

)︂[︂
1 − 1

𝜇

(︂
𝜏𝑝
1

)︂
𝑋1 +

1

𝜇

(︂
𝜏𝑝
2

)︂
𝑋2 − · · · +

(−1)𝜏𝑝

𝜇

(︂
𝜏𝑝
𝜏𝑝

)︂
𝑋𝜏𝑝

]︂
≃ exp

(︂
−Σ0

𝜇

)︂[︃
1 +

𝜉

𝜇

𝜏𝑝∑︁
𝑚=1

(−1)𝑚

𝑚

(︂
𝜏𝑝
𝑚

)︂]︃
, (S35)

where the last line assumes that 𝑋𝑞 ≃ 𝜉/𝑞 as 𝑞𝜇 ≫ 𝜉 for the relevant ranges of the parameters that enable
prolonged deformation. Since the summation of the last term is the negated 𝜏𝑝-th harmonic number,

∫︁ ∞

Σ0

(1 − 𝑝)
𝜏𝑝 𝑓𝑒𝑥𝑝 𝑑Σ𝑦 ≃ exp

(︂
−Σ0

𝜇

)︂⎡⎣1 − 𝜉

𝜇

𝜏𝑝∑︁
𝑗=1

1

𝑗

⎤⎦ . (S36)

For sufficiently large 𝜏𝑝,
𝜏𝑝∑︁
𝑗=1

1

𝑗
≈

∫︁ 𝜏𝑝+1

1

𝑑𝑥

𝑥
= ln(𝜏𝑝 + 1). (S37)
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Therefore, Eq. (S30) can be written as

1 − 𝜉

𝜇
ln(𝜏𝑝 + 1) ≃ (1 − Γ𝑝) exp

(︂
Σ0

𝜇

)︂
. (S38)

Given Σ0 ≪ 𝜇, exp(Σ0/𝜇) ≈ 1 + Σ0/𝜇. Hence,

− 𝜉

𝜇
ln(𝜏𝑝 + 1) ≃ Σ0

𝜇
− Γ𝑝 −

Σ0

𝜇
Γ𝑝

⇒ ln(𝜏𝑝 + 1) ≃ −Σ0 + 𝜇Γ𝑝 + Σ0Γ𝑝

𝜉

⇒ 𝜏𝑝 ≃ exp

[︂
(𝜇 + Σ0)Γ𝑝

𝜉

]︂
exp

(︂
−Σ0

𝜉

)︂
⇒ 𝜏𝑝 ≃ exp

(︂
𝜇Γ𝑝𝑉𝑎

𝑘𝐵𝑇

)︂
exp

(︂
−Σ0𝑉𝑎

𝑘𝐵𝑇

)︂
, (S39)

which indeed indicates that 𝜏𝑝 ∼ exp(−Σ0𝑉𝑎/𝑘𝐵𝑇 ). The numerically evaluated and analytically approxi-
mated values of the elapsed time 𝜏𝑝 are in close agreement, and both exhibit an exponential dependence on
Σ0, as shown in Fig. S6(B) for 𝜇 = 4 and 𝑘𝐵𝑇/𝑉𝑎 = 0.06.

6.3 Uniform distribution
An analytical approximation of the elapsed time 𝜏𝑝 can also be found for the uniform distribution of the
local yield stress, using a similar approach as the one presented for the exponential distribution. We start
from ∫︁ ∞

Σ0

(1 − 𝑝)
𝜏𝑝 𝑓𝑢𝑛𝑖 𝑑Σ𝑦 = 1 − Γ𝑝, (S40)

which is identical to Eq. (S30), except that 𝑓𝑒𝑥𝑝 is replaced with 𝑓𝑢𝑛𝑖. The left-hand side can be evaluated
by term-by-term calculation of the integrals after the binomial expansion. The first term is∫︁ ∞

Σ0

𝑓𝑢𝑛𝑖 𝑑Σ𝑦 =
𝑌 − Σ0

𝑌
. (S41)

The second term is ∫︁ ∞

Σ0

−
(︂
𝜏𝑝
1

)︂
𝑝𝑓𝑢𝑛𝑖 𝑑Σ𝑦 = −

(︂
𝜏𝑝
1

)︂
1

𝑌
exp

(︂
Σ0

𝜉

)︂∫︁ 𝑌

Σ0

exp

(︂
−Σ𝑦

𝜉

)︂
𝑑Σ𝑦

=

(︂
𝜏𝑝
1

)︂
𝜉

𝑌

[︂
exp

(︂
−𝑌 − Σ0

𝜉

)︂
− 1

]︂
. (S42)

The third term is ∫︁ ∞

Σ0

(︂
𝜏𝑝
2

)︂
𝑝2𝑓𝑢𝑛𝑖 𝑑Σ𝑦 = −

(︂
𝜏𝑝
2

)︂
1

𝑌

𝜉

2

[︂
exp

(︂
−2(𝑌 − Σ0)

𝜉

)︂
− 1

]︂
. (S43)

By introducing a new variable 𝑋 ≡ 𝑌 − Σ0, the left-hand side of Eq. (S40) can be expressed as∫︁ ∞

Σ0

(1 − 𝑝)
𝜏𝑝 𝑓𝑢𝑛𝑖 𝑑Σ𝑦

=
1

𝑌

{︂
𝑋 +

(︂
𝜏𝑝
1

)︂
𝜉

1

[︂
exp

(︂
−𝑋

𝜉

)︂
− 1

]︂
− · · · + (−1)𝜏𝑝+1

(︂
𝜏𝑝
𝜏𝑝

)︂
𝜉

𝜏𝑝

[︂
exp

(︂
−𝜏𝑝𝑋

𝜉

)︂
− 1

]︂}︂
=

1

𝑌

{︃
𝑋 + 𝜉

[︃
𝜏𝑝∑︁

𝑚=1

(−1)𝑚+1

𝑚

(︂
𝜏𝑝
𝑚

)︂
exp

(︂
−𝑚𝑋

𝜉

)︂
+

𝜏𝑝∑︁
𝑙=1

(−1)𝑙

𝑙

(︂
𝜏𝑝
𝑙

)︂]︃}︃
. (S44)
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For 𝑋 ≫ 𝜉, which holds true for the relevant ranges of the parameters that enable prolonged deformation,
the term in the second summation dominates the term in the first summation for any 𝑚 = 𝑙 ≥ 1. Hence,∫︁ ∞

Σ0

(1 − 𝑝)
𝜏𝑝 𝑓𝑢𝑛𝑖 𝑑Σ𝑦 ≃ 1

𝑌

[︃
𝑋 + 𝜉

𝜏𝑝∑︁
𝑙=1

(−1)𝑙

𝑙

(︂
𝜏𝑝
𝑙

)︂]︃

≃ 1

𝑌

⎡⎣𝑋 − 𝜉

𝜏𝑝∑︁
𝑗=1

1

𝑗

⎤⎦
≃ 1

𝑌
[𝑋 − 𝜉 ln(𝜏𝑝 + 1)] . (S45)

Substituting this expression into Eq. (S40),

𝑋 − 𝜉 ln(𝜏𝑝 + 1) ≃ 𝑌 (1 − Γ𝑝)

⇒ 𝜉 ln(𝜏𝑝 + 1) ≃ (𝑌 − Σ0) − 𝑌 (1 − Γ𝑝)

⇒ ln (𝜏𝑝 + 1) ≃ 𝑌 Γ𝑝 − Σ0

𝜉

⇒ 𝜏𝑝 ≃ exp

(︂
𝑌 Γ𝑝𝑉𝑎

𝑘𝐵𝑇

)︂
exp

(︂
−Σ0𝑉𝑎

𝑘𝐵𝑇

)︂
, (S46)

which shows 𝜏𝑝 ∼ exp (−Σ0𝑉𝑎/𝑘𝐵𝑇 ). This analytical approximation slightly overestimates the numerically
calculated values of 𝜏𝑝, as displayed in Fig. S6(C) for 𝑌 = 5 and 𝑘𝐵𝑇/𝑉𝑎 = 0.06, but the exponential
dependence of 𝜏𝑝 on Σ0 is robust also in the numerical results for different arbitrary strains Γ𝑝.
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