Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2022

## **Supplementary Material**

## **Magnetic Vitrimer-Based Soft Robotics**

Gaoweiang Dong <sup>a</sup>, Qiguang He<sup>b</sup> and Shengqiang Cai\* <sup>a</sup>

<sup>a</sup> Department of Mechanical and Aerospace Engineering, University of California, San Diego, La

Jolla, CA 92093, USA

<sup>b</sup> Mechanical Engineering and Applied Mechanics Department, University of Pennsylvania,

Philadelphia, 19104, USA

\*Corresponding author: E-mail: shqcai@ucsd.edu

## The PDF file includes:

Supplementary Figures S1-S6

## Other supplementary material for this manuscript includes the following:

Video1\_penetrate and shape morphing Video2\_self heal Video3\_catch and release Video4\_weld-transfer-unweld



**Figure S1**. Viscosity ( $\eta$ ) of MV with different magnetic particle loading as a function of temperature (T).



Figure S2. Zoom-in of Figure 3B, from which we calculated the secant modulus at 5% strain.



**Figure S3**. Viscoelastic properties of magnetic vitrimer stored for different period of times. A) Storage modulus (G', solid line), loss modulus (G'', dash line) and B) Tan( $\delta$ ) of vitrimer varied as a function of angular frequency ( $\omega$ ) from 0.1 to 100 rad/s at a strain level of 1%, T = 30°C.



**Figure S4**. Dimensions of a spherical MV before and after passing through a narrow opening. Scale bar, 2 mm.



**Figure S5**. Microscopic images of MV mixed 10 wt% iron oxide particles. The images were taken from OMAX 40X-2000X optical microscope. The images show homogenous distribution of the iron oxide particles within the vitrimer polymer matrix.



**Figure S6**. Rheological properties of magnetic vitrimer for different period of times of crosslinking. A) Storage modulus (G') and B) loss modulus (G'') of vitrimer varied as a function of angular frequency ( $\omega$ ) from 0.1 to 100 rad/s at a strain level of 1%, T = 30°C.