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1 Deriving the height equation

In this sectionwewill outline the derivation of h′′′(1
3
h3+luh

2)+g(h) = Vh for the active contractile
drop. The derivation for the active polymerising drop is almost identical except that there is no
imposed winding and the the director angle therfore scales differently, activity α scales differently,
and there is a non-zero advection velocity in the statement of mass conservation. We begin with
the force balance equation in the lubrication approximation

∂x̃p̃− f̃x̃ = η∂2
z̃ ũx̃ − α̃∂z̃(nxnz) = ∂z̃σ̃x̃z̃, (1a)

∂z̃ p̃ = 0, (1b)

where we have chosen

f̃x̃ = f̃+δ(x̃−
L̃

2
) + f̃−δ(x̃+

L̃

2
), f̃z̃ = 0. (2)

For here, we will omit the tildes, but remember that the quantities in this section are not non-
dimensionalised.

1.1 Mass conservation

We obtain the statement of mass conservation from the kinematic boundary boundary condition
D

Dt
(h(x, t) − z) = 0, where D

Dt
= ∂t + (u + wn) · ∇ is the material derivative. We then impose

a travelling wave solution h = h(x − V t) on the kinematic condition, where V is the unknown
constant drop velocity, to obtain this statement of mass conservation∫ h

0
(ux + wnx + V ) dx = 0, (3)

where we havemade the transformation x← x−V t, so that now x is the centre of mass coordinate,
andwherewhereu is the fluid velocity inside the drop satisfying force balance and incompressibility,
and wn describes the additional transport due to self-advection at speed w of active units whose
orientations are characterised by the director n. For the active contractile drop, which is the case
we outline below, w = 0.

The strategy from here will be to first integrate (1a) at ±L/2 to get boundary conditions on
p(±L/2) imposed by the Dirac deltas. We will then solve (1a) away from x = ±L/2, and apply the
derived boundary conditions at ±L/2.
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1.2 External forces impose boundary conditions on pressure

At x = L/2, we have

∫ L

2
+∆

L

2
−∆

∂xpdx− f+

∫ L

2
+∆

L

2
−∆

δ(x− L

2
)dx− f−

∫ L

2
+∆

L

2
−∆

δ(x+
L

2
)dx =

∫ L

2
+∆

L

2
−∆

∂zσxzdx.

The last termon the LHSvanishes because of the definition of the delta function and the termon the
RHS vanishes as we shrink the integration region (∆→ 0+) because the integrand is continuous.
The procedure is identical at x = −L/2. Thus we have

p(
L

2
+ ∆)− p(

L

2
−∆)− f+ = 0, p(−L

2
+ ∆)− p(−L

2
−∆)− f− = 0.

We model the system to have a uniform pressure π0 + πref , where πref is an arbitrary reference
pressure while π0 is the uniform pressure that is present in the absence of activity α and external
forces F±, where the drop is stationary and symmetric. Because the external force is localised to
x = ±L/2 and we take the pressure to be uniform everywhere else outside the drop, it must be the

case that p(L
2
+ ∆) = p(−L

2
−∆) = π0 + πref . We also define

p(L/2) = lim
∆→0+

p(L/2−∆), p(−L/2) = lim
∆→0+

p(−L/2 + ∆),

resulting in the boundary conditions

p(
L

2
) = π0 + πref − f+, (4a)

p(−L

2
) = π0 + πref + f−. (4b)

Solving equation (1a) is now equivalent to solving

∂xp = ∂zσxz (5)

with boundary conditions (4).

1.3 Pressure as a functional of drop height

Thepressure p(x) inside the drop can be related to the dropheighth(x)using the normal component
of the free surface boundary condition (see main text)

m · σ ·m = γκ− πref .

Using the scalings from the lubrication approximation, α ∼ ϵ−1, p ∼ ϵ−2, u ∼ 1, and w ∼ ϵ (from
incompressibility), σxx = σzz ≈ −p ∼ ϵ−2, σxz ∼ ϵ−1, we can write the LHS of the above equation
as

m · σ ·m = mxσxzmz +mzσxzmx +mzσzzmz +mxσxxmx

≈ 1

1 + (h′)2
(−p(h′)2 − p− 2h′σxz)

= −p− 2
h′σxz

1 + (h′)2

≈ −p.

2



Approximating κ to leading order, we have

κ =
h′′

(1 + (h′)2)
3
2

≈ h′′.

Thus
p(x) = −γh′′ + πref . (6)

1.4 Height equation

To get and ODE for h(x) we write ux in terms of h and ∂xp, substitute this into mass conservation
(3) and rearrange to get ∂xp in terms of h, i.e. ∂xp = f(h). We then integrate ∂xp = f(h) and use
the boundary conditions (4) to calculate the drop velocity V , this turns out to be a functional of h,
i.e V ∼

∫ L/2
−L/2 f(h) dx. After this, the ODE for h is given by substituting (6) into ∂xp = f(h).

To get ux in terms of h and ∂xp, we integrate (5), where σxz = η∂zux−αnxnz at leading order,
twicewith respect to z, using the partial slip boundary condition at the substrate and the tangential
component of the free surface boundary condition (see main text) (which can be re-written as a
condition on ∂zux(z = h)). We then have

ux =
αh

4πωη

(
1− cos

2ωπz

h

)
+

∂xp

η

(
z2

2
− h(z + lu)

)
, (7)

where we have used θ = ωπz/h.

Substituting (7) into (3) and isolating the pressure gradient yields

∂xp =
η(α̃h− V )
1
3h

2 + luh
, (8)

where α̃ = α
4πωη . From here the strategywill be to integrate (8) and apply the boundary conditions

(4) in order to determine the integration constant and the unknown drop velocity V . We find that
the drop velocity is given by

ηV =

∫ L/2
−L/2

ηα̃
1
3
h+lu

dx+ (f+ + f−)∫ L/2
−L/2

1
1
3
h2+luh

dx
. (9)

As a sanity check, we see that the second term in the numerator vanishes when the forces are
equal and opposite, which means that the drop velocity in unchanged by the forces when they
cancel each other out. This is good. The drop velocity also vanishes when the activity α and both
forces vanish, which is good. From here we can substitute into (6) (8) to obtain

γh′′′

η

(
1

3
h3 + luh

2

)
+

αh2

4πωη
= V h, (10)

where the drop velocity V is given by (9). For the active polymerising drop, the same procedure
applies, except we have ω = 0, θ ∼ ϵ, α ∼ ϵ−2, and the advection velocity w > 0. We set α = 0 in
the final result to get the equation in the main text.
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2 Additional phase diagrams
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Figure 1: First row: passive drop (A = 0), second row: weakly contractile (A = 0.3), third row: strongly contractile
(A = 1), fourth row: weakly polymerising (W = 0.3), fifth row: strongly polymerising (W = 1). First column: drop
velocity. Second column: drop length. Third column: raction between the drop and the substrate integrated over 70%
of the drop length. Fourth column: left contact angle ϕ− = h′(−L/2), fifth column: right contact angle ϕ+ = h′(L/2).
The solid line in each plot is an isoline corresponding to zero velocity, the dashed line is an isoline corresponding to the
the 1st moment µ1 = 0, and the dotted line is an isoline corresponding to the drop having equal contact angles.
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Figure 2: Left: profile for a drop with small polymerisation speed under stretch. Right: profile for a drop with small
contractile stress under stretch

3 Solving the height equation with the Crank-Nicholson method

The equation that is fed into the Crank-Nicholson algorithm is

∂th+ ∂x(−Vh+ h′′′(
1

3
h3 + luh

2) + g(h)) = 0, (11)

where g(h) = Ah2 for the active contractile drop, g(h) = Wlw(1 − exp(−h/lw)) for the active
polymerising drop, and the drop velocity V is defined in the main text. Equation (11) is subject to
the constraints ∫ L/2

−L/2
h(x) dx = Ω, h(±L/2) = h0, (12)

where Ω is the dimensionless drop volume, and

h′′(−L/2) + π0 + f− = 0, h′′(L/2) + π0 − f+ = 0, (13)

with
π0 =

2ϕ

−3h0
ϕ +

√
9h2

0
ϕ2 + 6Ω

ϕ

,

where ϕ is the re-scaled contact angle.

Equation (11) is of the form ∂th = I , where I represents the second term on the LHS of (11).
The Crank-Nicholson scheme advances in time according to

hn+1
i

∆t
− 1

2
Ii(X

n+1) =
hni
∆t

+
1

2
Ii(X

n), (14)

where the subscripts refer to the spatial discretisation and the superscripts refer to the timediscretisation.
Note that in the second term on the LHS, Ii(Xn+1), means I evaluated at spatial point i at time-step
n+ 1.
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3.1 Spatial discretisation

For the discretisation we use the substitution x = Ly, with L being the drop length, and discretise
the domain yϵ[−0.5, 0.5]with uniform grid spacing ∆y. The stiff term is discretised as follows

∂x

(
h′′

(
1

3
h3 + luh

2

))
→

[
(13h

3
i + luh

2
i ) + (13h

3
i+1 + luh

2
i+1)

]
(hi+2 − 3hi+1 + 3hi − hi−1)

2L4∆y4

−

[
(13h

3
i−1 + luh

2
i−1) + (13h

3
i + luh

2
i )

]
(hi+1 − 3hi + 3hi−1 − hi−2)

2L4∆y4
,

and all other terms are discretised as

∂xG(h)→ G(hi+1)−G(hi−1)

2L∆y
.

3.2 Algorithm and boundary conditions

Equation (14) leads to a set of nonlinear algebraic equations for {hn+1
i }, where {hni } are known,

which is solved using the Matlab fsolve algorithm. For N spatial grid points, define Xn+1 =
(h1, ..., hN )n+1. The algorithm solves F(Xn+1) = 0with

F(Xn+1) =
Xn+1

∆t
− 1

2
I(Xn+1)− Xn

∆t
− 1

2
I(Xn) i = 3, ..., N − 2, (15)

where I = (I1, ..., IN ), with Ii being the spatial differential operator evaluated at spatial point i.
The boundary conditions are implemented using grid points 1, 2, N − 1, N . The condition on the
drop height at ±L/2 is implemented as

F1 = hn+1
1 − h0 (16a)

FN = hn+1
N − h0. (16b)

The boundary conditions on the second derivative (13) are implemented using finite difference
coefficients to approximate the second derivative:

F2 =
2hn+1

1 − 5hn+1
2 + 4hn+1

3 − hn+1
4

∆y2
+ L2

(
π0 + f−

C̃

)
, (17a)

FN−1 =
2hn+1

N − 5hn+1
N−1 + 4hn+1

N−2 − hn+1
N−3

∆y2
+ L2

(
π0 − f+

C̃

)
. (17b)

Once equation (11) is discretised, we use a nonlinear solver (MATLAB’s “fsolve") for the
simultaneous equationsF(Xn+1) = 0, with the components ofF given by (15), (16), and (17). We
also calculate the Jacobian ∂Fi/∂hj

explicitly and supply it to the nonlinear solver. The algorithm
begins with a user set initial condition X1 which is chosen to satisfy the boundary conditions
on drop height but not necessarily the boundary conditions on the second derivative. The drop
velocity V as well as the drop length L are calculated iteratively starting from the initial condition
(the drop length is derived from the constraint that the drop has a constant volume) and plugged
into the Crank-Nicholson evolution equation which is solved forX2. This process is repeated until
steady state is reached i.e. the difference betweenXn+1 and Xn is less than some tolerance.
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4 Asymptoics for the active contractile drop

We expand the equation

h′′′(
1

3
h3 + luh

2) +Ah2 =
(
AI1 + (f+ + f−)

I2

)
h, (18)

where I1 =
∫ L/2
−L/2(

1

3
h+lu)

−1 dx and I2 =
∫ L/2
−L/2(

1

3
h2+luh)

−1 dx, for small activity and small forces.

4.1 Small forces and small activity

We consider small perturbations to a symmetric passive drop by expanding h(x) to linear order in
f± and A around the passive solution, obtained by setting f+ = f− = 0 and A = 0 in (18) and

either imposing h′′(x) = π0 or h′(
±L
2

) = ∓ϕ along with h(
±L
2

) = h0:

hp = −
ϕL

4

(
4x2

L2
− 1

)
+ h0. (19)

We also expand L to linear order in f± and A:

L = Lp − f+L+ − f−L− +ALα + · · · (20)

which leads to

h(y) =H0 + f+

(
ϕL+

4
(y2 − 1)− h+

)
+ f−

(
ϕL−
4

(y2 − 1)− h−

)
+A

(
hα −

ϕLα

4
(y2 − 1)

)
+ · · ·

(21)

where y = 2x/L, H0 = −ϕLp

4
(y2 − 1) + h0, and Lp is the length of the passive drop given by

Lp =

√
6Ω

ϕ
+

9h20
ϕ2
− 3h0

ϕ
for a drop of volumeΩ. Substituting (21) into (18) and keeping terms only

to linear order yields three differential equations atO(f+),O(f−), andO(A) that can be integrated
for h± and hα. At O(f+) we have

h′′′+(x)(
1

3
H2

0 + luH0) = −
1

I2
, h+(±1) = 0, h′′(1) = −

L2
p

4
− ϕL+

2
. (22)

For consistency, we must have also h′′+(−1) = −ϕL+/2 but we cannot impose this on the equation,
as there are already three boundary conditions. Fortunately, it falls out automatically because the
integrals I1 and I2 encode both boundary conditions on h′′. At O(f−) we have

h′′′−(x)(
1

3
H2

0 + luH0) = −
1

I2
, h−(±1) = 0, h′′−(−1) =

L2
p

4
− ϕL−

2
. (23)
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Again, for consistency, we must have h′′−(1) = −ϕL−/2, which again falls out automatically. At
O(A) we have

h′′′α (x)(
1

3
H2

0 + luH0) =
I1
I2
−H0, hα(±1) = 0, h′′α(1) = −

ϕLα

2
. (24)

For consistency we must have h′′α(−1) = −ϕLα/2, which falls out automatically. To perform the

integration, we use the variable y =
2x

L
. It is useful to define the following function

Gf (y) =

(
1 +

y√
Γ

)2

log

(
1 +

y√
Γ

)
−
(
1− y√

Γ

)2

log

(
1− y√

Γ

)
+

1

βϕ

[(
β − ϕy√

Γ

)2

log

(
β − ϕy√

Γ

)
−
(
β +

ϕy√
Γ

)2

log

(
β +

ϕy√
Γ

)]
,

where
Γ = 1 +

4h0
ϕLp

,

and

β =

√√√√√Γ +
12lu
ϕLp

Γ
.

We also need

Gα(y) =
ϕ

4β

[(
β

ϕ
+

y√
Γ

)2

log

(
β

ϕ
+

y√
Γ

)
−
(
β

ϕ
− y√

Γ

)2

log

(
β

ϕ
− y√

Γ

)]
.

In terms of these functions, the leading order contributions to the drop height are

h+(y) =

−L2
p(1 +

4h0
ϕLp

)

8G′′
f (1)

[
Gf (y) +

1

2
G′′

f (1))

(
1 +

4ϕ

L +
L2
p

)
y2 −

√
1 +

4h0
ϕLp

Gf (1)y −
G′′

f (1)(1 + 4ϕL+/L
2
p)

2(1 + 4h0/ϕLp)

]
,

(25a)

h−(y) =

−L2
p(1 +

4h0
ϕLp

)

8G′′
f (1)

[
Gf (y)−

1

2
G′′

f (1)

(
1− 4ϕL−

L2
p

)
y2 −

√
1 +

4h0
ϕLp

Gf (1)y +
G′′

f (1)(1− 4ϕL−/L
2
p)

2(1 + 4h0/ϕLp)

]
,

(25b)

hα(y) =

3L2
p

√
1 +

4h0
ϕLp

2ϕ

[
G′′

α(1)

G′′
f (1)

Gf (y)−Gα(y) +

√
1 +

4h0
ϕLp

(
Gα(1)−

G′′
α(1)

G′′
f (1)

Gf (1)

)
y

]
, (25c)

where

L+ =
−L3

p

24

(
ϕLp

2
+ h0

)−1

, (26a)

L− =
L3
p

24

(
ϕLp

2
+ h0

)−1

, (26b)

Lα = 0. (26c)
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5 Hints of bi-stability

Both the active contractile drop and active polymerising drop can produce different steady state
drop profiles in the iterative numerical scheme, starting from different height profiles with the
same activity and applied forces. This is shown in figure 5 for the active contractile drop at the
RP(R)/DH(R) boundary. For the active polymerisingdrop, this behaviour occurs at the LP(R)/TM(R)
boundary.
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Figure 3: Left: Initial height profiles (dashed lines) and steady state profiles (solid lines) for Right: Only the initial
height profiles. Here A = 1, F = −2, and S = 2.
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