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S1. LCL Modeling Details 

 As noted in the main article, we applied the Locally Correlated Lattice (LCL) 

equation of state (EOS) to analyze the ellipsometric thermal expansion results and then to 

generate the predictions for the percent free volume of the polymer melts (Table 5 and Figure 

6).  The LCL EOS expression is given by 
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where kB is the Boltzmann constant and Nm is the number of molecules.  There are three 

molecular level parameters:  r, the number of segments (occupied lattice sites) per molecule; 

v, the volume per lattice site; and , the segment-segment nonbonded interaction energy. In 

applying this equation in practice, the pressure (P) is taken to be a function of two 

independent variables: temperature (T), and either the volume per molecule (V/Nm), or the 

specific volume (Vsp = (V/Nm)/Mw) given the molecular weight (Mw).  (If an experimental 

molecular weight is not available, we simply assign a value of Mw = 100 kg/mol; any other 

choices, as long as they are in the polymeric regime, e.g. Mw > 10 kg/mol, will not noticeably 

change any per weight (intensive) properties like the specific volume, or the fractional free 

volume.)  Eq. S1 also leads to an analytical expression for the coefficient of thermal 

expansion, V, as a function of T and Vsp, using the relation  
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where here we have written V with more detailed partial derivative notation in order to 

distinguish it from the other thermodynamic partial derivatives.  Working in terms of 

independent variables, T and Vsp, is necessary because, as with many theoretical equations of 

state, Vsp cannot be directly expressed as a function of T and P.  This also means that in 

practice, we solve for Vsp values at any given (T, P) via numerical root finding calculations. 

 As discussed in the main text, we only need to partially characterize the LCL model to 

predict the fractional free volume at ambient pressure.  Therefore, in fitting each of the 

polymer melts we pre-set the v parameter at a value of 8.0 mL/mol (a typical value for 

polymers). We then specify the following experimental values and conditions: V = N (i.e. 

using the experimental N values in main article Table 5), T = 398 K (an average temperature 

of our experiments), and P = 1 atm. For convenience, we also set Vsp = 1 mL/g and Mw = 100 

kg/mol, which are both typical values for polymers.  Note that if we were to change either Vsp 

or Mw by a factor of ten it will not noticeably change the LCL prediction for fractional free 

volume (e.g. the change is < 0.01%). Of course, the absolute Vsp(T) curve for the model will 

not be accurate (only the relative expansion is accurate), so if, in the case of other scenarios, 

we also wish for accuracy in Vsp(T), then incorporating the value of a single specific volume 

measurement at any chosen T would suffice for such prediction.   

 With the values specified, we then solve the two equations, Eqs. S1 and S2, for the 

two remaining unknown molecular parameters, r and .  In accordance with the simple free 

volume definition in main article Eq. 3, we then calculate the fractional free volume as a 

function of temperature at P = 1atm, Vfree/V = (Vsp(T) − Vhc:sp)/Vsp(T), using the model’s 

hypothetical Vsp(T) for the specified T and P = 1atm and specific hardcore volume, Vhc:sp = 

rv/Mw.  As noted above, even though the model’s absolute values for Vsp(T) and Vhc:sp = 

rv/Mw are not accurate, as long as we are consistent in the calculations and apply both of 

these matching model quantities together, the ratio of Vfree to total volume, the fractional free 

volume, will be accurate.  As it turns out in our procedure here, it is the model’s  parameter 

that is expected to be fairly accurate, i.e.  will turn out to be almost the same value whenever 

a full PVT data set is available for fitting. 

 Finally, as noted in the main article (caption of Table 1), the PVT data that we have 

available for PVME are for P  10 MPa, and so we used the LCL EOS to fit this available 

PVT data and then predicted the PVT-based V value for the PVME melt at P = 1atm.  In the 

LCL fit, we chose PVT data in a temperature range of 44 to 110 °C, which is close to the 

same range as the ellipsometry data, and chose this data in a pressure range of 10 to 20 MPa, 

which are the data that are the closest to atmospheric pressure.  The LCL parameters resulting 

from this fit are: r/Mw = 129.72 mol/kg, v = 6.7347 mL/mol, and  = −1856.9 J/mol.  Based 

on this characterization, LCL predicts that at P = 1atm and T = 75 °C ( the midpoint of the 

ellipsometry data range) that the V value should be 6.70  10−4 °C-1; this is the PVT-based 
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V value that is listed for the PVME melt in Table 2 of the main article; we expect it to be 

very accurate given that the fitted data are fairly close to the T,P of the prediction. 

S2. A Simple Thought Experiment to Explain the Connection Between V and N 

 To better understand the thermal expansion of a polymer when it is under the 

mechanical constraint of fixed area (due to the non-expanding substrate), we imagine 

breaking the overall process into two separate steps.  This process is presented in the diagram 

in Figure S1.  In the first step (1→2), a temperature increase (T) is applied to a substance 

having an original height, h1, and an original area of A1 = Lx1  Ly1 and volume of V1 = A1h1.  

In this step, the substance is unrestricted so it expands in all three directions to attain its 

equilibrium volume at the new temperature.  The volume change for this step, V(1→2), is 

the same as the volume change that would be calculated knowing the material’s volumetric 

coefficient of thermal expansion, i.e. V(1→2)  V1VT.  In this expansion, h, and the side 

lengths, Lx and Ly, all increase, and it makes sense that V(1→2)  Ah(1→2) because it 

would be neglecting the contributions from changes in Lx and Ly.  Note that because the 

relative expansion is the same in each Cartesian direction, if one were to measure N = 

(1/h)dh/dT after this first step, then it would be equal to the material's coefficient of linear 

expansion, L = V/3.  So far, this discussion (step 1→2) has involved an unrestricted 

sample, that could be either in a liquid-like (melt) or glassy state.  

   

Fig. S1.  Diagram of thermal expansion of a substance under the net mechanical restriction of 

constant area (Lx  Ly), posed as a two-step process.  In the first step, the temperature is increased and 

the sample expands freely where its lengths on all sides (h, Lx, Ly) increase while maintaining its 

original aspect ratio.  (For simplicity we assume of course that if the sample in this first step were a 

low viscosity liquid, that it is not allowed to flow so freely that it takes on other arbitrary shapes.)  In 

the second step, with T held fixed, the material's sides, Lx and Ly, are compressed until reaching their 

original values, while h is allowed to increase.  The result of the second step will depend on whether 

the material is a polymer melt (liquid) or a glass.  See text for discussion. 

 To capture the consequences of having a fixed area sample in an ellipsometry 

experiment, we move to the second step (2→3) of our thought experiment on the above 

sample:  We stay at the final temperature and compress the material in the x and y directions 

(i.e. decrease Lx and Ly) to restore it to the original area, A1, but we still allow an unrestricted 

response in the material in the one remaining (normal) direction by permitting a further 

change in height, h(2→3).  This second step mimics the kind of process needed to measure 

the material’s Poisson ratio, .  (In an experiment where a material is stretched or 

compressed,  is defined by the negative of the ratio of the lateral strain to the longitudinal 

strain.)  Manipulating the sample to restore A back to its original value will cause h to 

(1) (2) (3)
DT compress Lx,Ly

h,Lx,Ly increase

original Lx,Ly

V3 = V2 if liquid

V3 < V2 if glass

h increasesV2 » V1 + V1aVDT

h
Lx

Ly

if liquid or glass



Electronic Supplementary Information 

S4 

 

increase further (i.e. h(2→3) is positive) as it aims to attain its preferred volume at that 

temperature. Here we must note an important difference between how solid (glass) and liquid 

films respond.   

 For a liquid or melt, the increase in height, h(2→3), will fully compensate for the 

compression in the other directions such that the overall volume change in the second step, 

V(2→3), will be zero.  Therefore we have Vnet = V(1→2) = A1hnet = A1[h(1→2) + 

h(2→3)].  This means the net relative change in volume (Vnet/V1) will be the same as the 

net relative change in sample height (hnet/h1), and so, the final apparent N  (1/h1)hnet/T 

 (1/V1)Vnet/T would correspond to the same outcome as in the description of the melt (eq 

1) in the main article, where we essentially concluded that N = V (= 3L).   

On the other hand, for most solids, the volume change in this second step, V(2→3), 

will be negative.  (This result is equivalently embodied in how most solids have a Poisson 

ratio of  < 0.5, while  = 0.5 would be required to maintain constant volume.)  Even though 

a height change (h(2→3)) is allowed in the second step, a solid will not change height 

enough to compensate for restoring the area via compression, which means that the net 

change, hnet = [h(1→2) + h(2→3)] will fall short of what would be needed to account for 

the natural volume change (V(1→2)) associated with the solid’s V.  In other words, Vnet = 

A1hnet < V(1→2), and thus N  (1/h1)hnet/T < V. 

 

S3.  Accounting for the temperature dependence of the refractive indices of the silicon 

substrate 

Figure S2. The temperature dependence of a) the refractive index (n) and b) extinction coefficient (k) 

of Si across the range of wavelengths used in our experiments. The two temperature values shown, 30 

°C and 170 °C, correspond to the minimum and maximum temperatures studied. These are 

experimental values obtained from data in the commercial modelling software (WVASE, J.A. 

Woollam Co.). 
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Figure S3. Thickness as a function of temperature plot for a thin film of PCHMA obtained 

from data analysis wherein the refractive index change of the substrate is not taken into 

account when fitting the model to the data. (a) Thickness on a linear axis. (b) Natural 

logarithm of thickness. The αN for the glass region is 2.91 (± 0.080) ×10-4 °C-1, whereas for 

the melt region αN is 6.62 (± 0.042) ×10-4 °C-1. The analysis of the same set of data using 

𝑛̃(𝑇) is shown in Figure 3b. 
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Table S1. Comparison of Coefficients of Thermal Expansion for Thin Films with and 

without Consideration of the Temperature-Dependent Refractive Index of Silicon 

 

 

 

 

 

Polymer Acronym  

 

Region 

αN found with T-

dependent 𝑛̃(𝜆) for Si 

[×10-4 °C-1] 

αN found with  𝑛̃(𝜆) 

for Si fixed at  

T = 30 °C  [×10-4 °C-1] 

PS Melt 5.54 7.02 

PBMA Melt 5.54 8.45 

PVME Melt 5.63 5.96 

PMMA Melt 5.33 6.09 

PαMS Melt 4.54 8.32 

PCHMA Melt 5.49 6.62 

PCHMA Glass 1.86 2.91 

TMPC Glass 2.13 3.57 


