
Supplementary Information 

  

 

Light Scattering from Mixtures of Interacting, Nonionic Micelles 
with Hydrophobic Solutes 
Nathan P. Alexander,*,a Ronald J. Phillips,b and Stephanie R. Dunganb,c

S1. Thermodynamic fluctuation theory 
1.1 Derivation of 𝜹𝑺𝑻 and symmetry relations for [𝐆] 

In this section the total entropy fluctuation 𝛿𝑆், given by 
eqn (7)–(9), is derived for an n-component mixture at constant 
temperature and volume using either the Gibbs thermodynamic 
framework at constant pressure, corresponding to typical 
experimental conditions, or, equivalently, the McMillan-Mayer 
framework at constant solvent chemical potential, which 
defines the chemical potential fluctuations of a mixture with a 
force-free solvent. We begin with eqn (7) 

−2𝑇𝛿𝑆் =  𝛿𝜇𝛿𝑁



ୀଵ

=  𝛿𝜇𝛿𝑁

ିଵ

ୀଵ

+ 𝛿𝜇𝛿𝑁  . (𝑆. 1) 

According to the Gibbs framework, the total fluctuation 
differential of the extensive Gibbs free energy is given by 

𝛿𝑔 = −𝑆𝛿𝑇 + 𝑉𝛿𝑝 +  𝜇𝛿𝑁

ିଵ

ୀଵ

+ 𝜇𝛿𝑁  , (𝑆. 2) 

and the chemical potentials are defined as 

𝜇 = ൬
𝜕𝑔

𝜕𝑁
൰

,்,ேೖಯ

 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛. (𝑆. 3) 

and 𝑁  is the number of moles of component 𝑖. Furthermore, 
using the constant volume constraint, we have 

𝛿𝑉 =  𝑉ത𝛿𝑁



ୀଵ

=  𝑉ത𝛿𝑁

ିଵ

ୀଵ

+ 𝑉ത𝛿𝑁 = 0  , (𝑆. 4) 

where 𝑉ഥ is the molar volume of species 𝑖, which is assumed to 
be constant. Solving for the fluctuation 𝛿𝑁 in eqn (S.4) 
provides 

𝛿𝑁 = − 
𝑉ത

𝑉ത

𝛿𝑁

ିଵ

ୀଵ

  . (𝑆. 5) 

Eqn (S.1) and (S.5),  combine to yield 

 𝛿𝜇𝛿𝑁



ୀଵ

=  ቆ𝛿𝜇 −
𝑉ത

𝑉ത

𝛿𝜇ቇ 𝛿𝑁

ିଵ

ୀଵ

  . (𝑆. 6) 

 
Now, using the Gibbs-Duhem relation at constant temperature, 
pressure, and volume, we have 

 𝑁𝛿𝜇



ୀଵ

=  𝑁𝛿𝜇

ିଵ

ୀଵ

+ 𝑁𝛿𝜇 = 0  . (𝑆. 7) 

Solving for the solvent fluctuation 𝛿𝜇 in eqn (S.7) provides 

𝛿𝜇 = − 
𝑉

𝑉

𝑁

𝑁
𝛿𝜇

ିଵ

ୀଵ

= − 
𝐶

𝐶
𝛿𝜇

ିଵ

ୀଵ

  . (𝑆. 8) 

Eqn (S.6) and (S.8) combine with the solvent volume fraction 

𝐶𝑉ത = 1 − 𝜙  . (𝑆. 9) 

 to provide 

 𝛿𝜇𝛿𝑁



ୀଵ

=  ቌ𝛿𝜇 +
𝑉ത

1 − 𝜙
 𝐶𝛿𝜇

ିଵ

ୀଵ

ቍ 𝛿𝑁

ିଵ

ୀଵ

  . (𝑆. 10) 

At constant temperature and pressure, the species chemical 
potentials 𝜇 = 𝜇(𝑇, 𝑝, 𝐶, . . . , 𝐶ିଵ) are expanded via the 
chain rule  

𝛿𝜇 = −  ൬
𝜕𝜇

𝜕𝐶
൰

,்,ேಯೖ

𝛿𝐶

ିଵ

ୀଵ

  , (𝑆. 11) 

and eqn (S.1), (S.10) and (S.11) combine to give 

−2𝑇𝛿𝑆் = 𝑉   𝐺𝛿𝐶𝛿𝐶

ିଵ

ୀଵ

ିଵ

ୀଵ

  , (𝑆. 12) 

where 

𝐺 = ൬
𝜕𝜇

𝜕𝐶
൰

,்,ಯೖ

+
𝑉ത

1 − 𝜙
 𝐶 ቆ

𝜕𝜇

𝜕𝐶
ቇ

,்,ಯೖ

ିଵ

ୀଵ

 

𝑓𝑜𝑟 𝑖, 𝑘 = 1,2, … , 𝑛 − 1  . (𝑆. 13) 

Now, using the McMillan-Mayer framework, we will first 
show that [𝐆] is symmetric, followed by a derivation for the 
total entropy fluctuation 𝛿𝑆். The extensive McMillan-Mayer 
free energy for an n-component mixture is given by a Legendre 
transform of the Helmholtz free energy 𝐴(𝑉, 𝑇, 𝑁ଵ, . . . , 𝑁).1, 2  

𝐹෨(𝑉, 𝑇, 𝑁ଵ, . . . , 𝑁ିଵ, �̅�) = 𝐴(𝑉, 𝑇, 𝑁ଵ, . . . , 𝑁) − 𝑁�̅� , (𝑆. 14) 

and the total fluctuation differential of 𝐹෨  is given by 
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𝛿𝐹෨ = −𝑆𝛿𝑇 − 𝑝𝛿𝑉 +  𝜇𝛿𝑁

ିଵ

ୀଵ

− 𝑁𝛿𝜇  , (𝑆. 15) 

where the chemical potential of component 𝑖 at constant 
volume is defined according to 

𝜇 = ቆ
𝜕𝐹෨

𝜕𝑁
ቇ

்,ఓ,,ேೖಯ

 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 − 1. (𝑆. 16) 

At constant volume, temperature, and solvent chemical 
potential, mixed partial derivatives of the McMillan-Mayer free 
energy are given by 

ቆ
𝜕ଶ𝐹෨

𝜕𝑁𝜕𝑁
ቇ

்,ఓ,,ೖಯ

= ቆ
𝜕ଶ𝐹෨

𝜕𝑁𝜕𝑁
ቇ

்,ఓ,,ೖಯ

 

𝑓𝑜𝑟 𝑖, 𝑘 = 1,2, … , 𝑛 − 1  . (𝑆. 17) 

Multiplying eqn (S.17) through and by constant volume 𝑉 yields 

ቆ
𝜕ଶ𝐹෨

𝜕𝐶𝜕𝑁
ቇ

்,ఓ,,ೖಯ

= ቆ
𝜕ଶ𝐹෨

𝜕𝐶𝜕𝑁
ቇ

்,ఓ,,ೖಯ

 

𝑓𝑜𝑟 𝑖, 𝑘 = 1,2, … , 𝑛 − 1  , (𝑆. 18) 

and eqn (S.16) and (S.18) combine to provide 

൬
𝜕𝜇

𝜕𝐶
൰

்,ఓ,,ೖಯ

= ൬
𝜕𝜇

𝜕𝐶
൰

்,ఓ,,ೖಯ

 

𝑓𝑜𝑟 𝑖, 𝑘 = 1,2, … , 𝑛 − 1  . (𝑆. 19) 

Furthermore, at constant 𝑉, 𝑇, and 𝜇, eqn (S.1) reduces to 

−2𝑇𝛿𝑆் =  𝛿𝜇𝛿𝑁

ିଵ

ୀଵ

  . (𝑆. 20) 

and the species chemical potentials 𝜇 = 𝜇(𝑇, 𝜇, 𝐶, . . . , 𝐶ିଵ) 
are expanded via the chain rule  

𝛿𝜇 =  ൬
𝜕𝜇

𝜕𝐶
൰

்,ఓ,,ೖಯ

𝛿𝐶

ିଵ

ୀଵ

  . (𝑆. 21) 

Eqn (S.20) and (S.21) combine to give 

−2𝑇𝛿𝑆் = 𝑉   ൬
𝜕𝜇

𝜕𝐶
൰

்,ఓ,,ೖಯ

𝛿𝐶

ିଵ

ୀଵ

𝛿𝐶

ିଵ

ୀଵ

  . (𝑆. 22) 

Finally, combination of eqn (S.12), (S.13), and (S.22) yield 

𝐺 = ൬
𝜕𝜇

𝜕𝐶
൰

்,ఓ,,ೖಯ

= ൬
𝜕𝜇

𝜕𝐶
൰

,்,ಯೖ

+
𝑉ത

1 − 𝜙
 𝐶 ቆ

𝜕𝜇

𝜕𝐶
ቇ

,்,ಯೖ

ିଵ

ୀଵ

 

𝑓𝑜𝑟 𝑖, 𝑘 = 1,2, … , 𝑛 − 1  . (𝑆. 23) 

1.2 Diagonalization of [𝐆] 

In this section, the modal matrix [𝐏] for the diffusivity matrix 
[𝐃] is shown to diagonalize the chemical potential derivative 
matrix [𝐆] via 

ൣ𝑮൧ = [𝑷]்[𝑮][𝑷]  . (𝑆. 24) 

To begin, note that for a ternary mixture, the matrix ൣ𝐆൧ is 
diagonal if  

𝐺௦ = 𝐺௦ = 0. (𝑆. 25) 

Furthermore, [𝐆] is symmetric,3 so that 

𝐺௦ = 𝐺௦  . (𝑆. 26) 

Combining eqn (S.24)–(S.26) provides 

𝐺𝑃𝑃௦ + 𝐺௦(𝑃𝑃௦௦ + 𝑃௦𝑃௦) + 𝐺௦௦𝑃௦𝑃௦௦ = 0  . (𝑆. 27) 

Eqn (S.27) and (34) combine to yield 

𝐺𝐷௦
ଶ + 𝐺௦(𝐷ା + 𝐷ି − 2𝐷)𝐷௦

+ 𝐺௦௦൛𝐷ା𝐷ି − 𝐷(𝐷ା + 𝐷ି) + 𝐷
ଶൟ = 0  . 

(𝑆. 28) 

The following relations for the trace 

𝐷ା + 𝐷ି = 𝐷 + 𝐷௦௦  . (𝑆. 29) 

and the determinant 

𝐷ା𝐷ି = 𝐷௦௦𝐷 − 𝐷௦𝐷௦ . (𝑆. 30) 

of [𝐃] are then combined with eqn (S.28) to give 

𝐷𝐺௦ + 𝐷௦𝐺௦௦ = 𝐺𝐷௦ + 𝐺௦𝐷௦௦ , (𝑆. 31) 

which is the Onsager Reciprocal relation.3 Hence, eqn (S.25) is 
satisfied and ൣ𝐆൧ is diagonal. 

1.3 Derivations of 𝑩 and 𝑹𝟗𝟎 

In this section, we begin with eqn (15), generalized for an n-

component mixture at constant temperature and pressure 

𝑃(𝛿𝒙) = 𝛺
ିଵ𝑒𝑥𝑝 ൝−

𝑉

2𝑘𝑇
൭ 𝐺𝛿𝐶መ

ଶ
ିଵ

ୀଵ

൱ൡ  . (𝑆. 32) 

 Using the product rule for exponents, we can write 

𝑃(𝛿𝒙) = 𝑃ଵ൫𝛿𝐶መଵ൯𝑃ଶ൫𝛿𝐶መଶ൯ ⋯ 𝑃ିଵ൫𝛿𝐶መିଵ൯ ,  

(𝑆. 33) 

where, 

𝑃൫𝛿𝐶መ൯ = 𝛺
ିଵ𝑒

ቀି


ଶಳ்
ீఋመ

మ
ቁ
  . (𝑆. 34) 

Eqn (S.33) and (S.34) indicate that the decoupled concentration 

fluctuations 𝛿𝐶 are statistically uncorrelated with a fluctuation 
probability 𝑃൫𝛿𝐶൯ that obeys a Gaussian distribution. The 

constants 𝛺  are determined via integration of the fluctuation 

probability over all possible fluctuations, 

𝛺 = 〈𝛿𝐶መ〉 = න 𝑑

ஶ

ିஶ

൫𝛿𝐶መ൯𝑒
ቀି


ଶಳ்

ீఋመ
మ

ቁ
= ቆ

2𝜋𝑘𝑇

𝑉𝐺

ቇ

ଵ
ଶ

  , (𝑆. 35) 
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Using eqn (S.34), the mean-square fluctuation in concentration 

is given by 

〈𝛿𝐶መ
ଶ

〉 = න 𝑑

ஶ

ିஶ

൫𝛿𝐶መ൯𝛿𝐶መ
ଶ

𝑃൫𝛿𝐶መ൯

= 𝛺
ିଵ න 𝑑

ஶ

ିஶ

൫𝛿𝐶መ൯𝛿𝐶መ
ଶ

𝑒
ቀି


ଶಳ்

ீఋመ
మ

ቁ

=  𝛺
ିଵ ቆ

2𝜋𝑘𝑇

𝑉𝐺

ቇ

ଵ
ଶ 𝑘𝑇

𝑉𝐺

  ,                            (𝑆. 36) 

and eqn (S.35) and (S.36) combine to yield 

〈𝛿𝐶መ
ଶ

〉 =
𝑘𝑇

𝑉𝐺

  . (𝑆. 37) 

In order to determine the field autocorrelation function, 

defined by eqn (19), we invoke non-equilibrium 

thermodynamics and expand the total fluctuation of the local 
dielectric constant 𝜀 = 𝜀൫𝑇, 𝑝, 𝐶ଵ, 𝐶, . . . 𝐶ିଵ൯, expressed here 

as function of 𝑛 + 1 intensive variables.4 The chain rule at 

constant 𝑇 and 𝑝 provides 

𝛿𝜀(𝒒, 𝑡) =  ቆ
𝜕𝜀

𝜕𝐶መ

ቇ
்,

ିଵ

ୀଵ

𝛿𝐶መ(𝒒, 𝑡)  , (𝑆. 38) 

where, 𝛿𝐶(𝒒, 𝑡) is the Fourier transform of the decoupled local 

concentration fluctuation 𝛿𝐶(𝒓, 𝑡), given by 

𝛿𝐶መ(𝒒, 𝑡) =
1

𝑉
න 𝑑𝑟ଷ



𝑒𝒒⋅𝒓𝛿𝐶መ(𝒓, 𝑡)  . (𝑆. 39) 

The time correlation function for fluctuations in 𝜀(𝒒, 𝑡) is given 

by 

〈𝛿𝜀∗(𝒒, 0)𝛿𝜀(𝒒, 𝑡)〉

=   ቆ
𝜕𝜀

𝜕𝐶መ

ቇ
்,

ቆ
𝜕𝜀

𝜕𝐶መ
ቇ

்,

ିଵ

ୀଵ

ିଵ

ୀଵ

〈𝛿𝐶መ
∗(𝒒, 0)𝛿𝐶መ(𝒒, 𝑡)〉  .                  (𝑆. 40) 

The concentration fluctuations 𝛿𝐶(𝒒, 𝑡) are statistically 

uncorrelated, consistent with eqn (S.33) and the Siegert 

relation, so that  

〈𝛿𝐶መ
∗(𝒒, 0)𝛿𝐶መ(𝒒, 𝑡)〉 = 〈𝛿𝐶መ

∗(𝒒, 0)𝛿𝐶መ(𝒒, 𝑡)〉𝛿  , (𝑆. 41) 

where 𝛿  is the Kronecker delta. Eqn (S.40), (S.41), and (25) 

combine to yield 

〈𝛿𝜀∗(𝒒, 0)𝛿𝜀(𝒒, 𝑡)〉

=  ቆ
𝜕𝜀

𝜕𝐶መ

ቇ
்,

ଶିଵ

ୀଵ

〈𝛿𝐶መ
∗(𝒒, 0)𝛿𝐶መ(𝒒, 0)〉𝑒𝑥𝑝൫−𝑞ଶ𝐷𝑡൯  .               (𝑆. 42) 

In order to relate the static correlation function 
〈𝛿𝐶

∗(𝒒, 0)𝛿𝐶(𝒒, 0)〉 in eqn (S.42) with the mean-square 

fluctuation 〈𝛿𝐶
ଶ

〉, given by eqn (S.37), we note that in the limit 

𝑞𝑅∗ → 0, 𝑞 is small compared with the position vector 𝒓 that 

spans the region enclosed by the scattering volume 𝑉, so that 

𝒒 ⋅ 𝒓 = 0 in the limit 𝑞𝑅∗ → 0. Hence, we can write 

𝛿𝐶መ(𝒒, 𝑡) = lim
ோ∗→

1

𝑉
න 𝑑𝑟ଷ



𝑒𝒒⋅𝒓𝛿𝐶መ(𝒓, 𝑡) =
1

𝑉
න 𝑑𝑟ଷ



𝛿𝐶መ(𝒓, 𝑡)  .  

(𝑆. 43) 
Now, setting 𝑡 = 0 in eqn (S.43), the static autocorrelation function 

of 𝛿𝐶(𝒒, 0) in the limit 𝑞𝑅∗ → 0 is related to 〈𝛿𝐶
ଶ

〉 according 

to 

lim
ோ∗→

〈𝛿𝐶መ
∗(𝒒, 0)𝛿𝐶መ(𝒒, 0)〉 = 〈ቈ

1

𝑉
න 𝑑𝑟ଷ



𝛿𝐶መ(𝒓, 0)

ଶ

〉 = 〈𝛿𝐶መ
ଶ

〉  ,  

(𝑆. 44) 

which describes mean-square fluctuations in concentration that 
occur via mass exchange between the liquid enclosed within the 
scattering volume 𝑉 and the surrounding bath. Eqn (S.37), (S.42), 
and (S.44) combine to provide 

〈𝛿𝜀∗(𝒒, 0)𝛿𝜀(𝒒, 𝑡)〉 =  ቆ
𝜕𝜀

𝜕𝐶መ

ቇ
்,

ଶିଵ

ୀଵ

𝑘𝑇

𝑉𝐺

𝑒𝑥𝑝൫−𝑞ଶ𝐷𝑡൯  . (𝑆. 45) 

For a non-magnetic, non-absorbing material, the solution refractive 
index is related to the dielectric constant via 

𝜀 = 𝑛ଶ  , (𝑆. 46) 

so that eqn (S.45) becomes  

〈𝛿𝜀∗(𝒒, 0)𝛿𝜀(𝒒, 𝑡)〉 = 4𝑛ଶ  𝑅
ଶ

ିଵ

ୀଵ

𝑘𝑇

𝑉𝐺

𝑒𝑥𝑝൫−𝑞ଶ𝐷𝑡൯  , (𝑆. 47) 

where the refractive index increments are given by 

𝑅 = ൫𝜕𝑛 𝜕𝐶መ⁄ ൯
்,

  , (𝑆. 48) 

Eqn (19), (22), and (S.47) combine to yield the absolute value of the 
normalized field correlation function for a n-component mixture at 
constant temperature and pressure 

ห𝑔(ଵ)(𝒒, 𝑡)ห =
〈𝛿𝜀∗(𝒒, 0)𝛿𝜀(𝒒, 𝑡)〉

〈|𝛿𝜀(𝒒, 0)|ଶ〉
= 

⎩
⎪
⎨

⎪
⎧

𝑒𝑥𝑝൫−𝑞ଶ𝐷𝑡൯

∑ ቆ
𝑅

𝑅
ቇ

ଶ
𝐺

𝐺

ିଵ
ୀଵ

⎭
⎪
⎬

⎪
⎫

ିଵ

ୀଵ

. (𝑆. 49) 

Note, by taking the absolute value, the term 𝑒ିఠ௧ has been 
eliminated from eqn (22). For a ternary mixture (𝑛 = 3), eqn (S.49) 
reduces to 

ห𝑔(ଵ)(𝒒, 𝑡)ห = ൬
𝐵

1 + 𝐵
൰ 𝑒𝑥𝑝൫−𝑞ଶ𝐷ଵ𝑡൯ + ൬

1

1 + 𝐵
൰ 𝑒𝑥𝑝൫−𝑞ଶ𝐷ଶ𝑡൯,  

(𝑆. 50) 

where the mode amplitude ratio equals 

𝐵 = ቆ
𝑅ଵ

𝑅ଶ

ቇ

ଶ

ቆ
𝐺ଶ

𝐺ଵ

ቇ  . (𝑆. 51) 
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In order determine the Rayleigh ratio 𝑅ଽ for an n-component 
mixture at constant temperature and pressure, we combine eqn 
(37) and (S.47) and set 𝑡 = 0, 𝜀ଶ = 𝑛ସ, and 𝑘 ≈ 2𝜋𝑛 𝜆⁄  to 
provide 

𝑅ଽ =
𝐼(𝒒)𝑅ଶ

𝐼𝑉
=

4𝜋ଶ𝑛ଶ

𝜆
ସ  𝑅

ଶ
ିଵ

ୀଵ

𝑘𝑇

𝑉𝐺

    . (𝑆. 52) 

For a ternary mixture (𝑛 = 3), we have 

𝑅ଽ =
4𝜋ଶ𝑛ଶ

𝜆
ସ 𝑅ଶ

ଶ
ቆ

𝑘𝑇

𝐺ଶ

ቇ (1 + 𝐵)    . (𝑆. 53) 

S2. Refractive index derivatives, chemical 
potentials, thermodynamic driving forces, and 
diffusion coefficients for multicomponent 
micellar solutions 

2.1 Refractive index derivatives 

The solution refractive index for a ternary, single phase 
mixture can be defined as a function of four independent, 
intensive variables 𝑛 = 𝑛(𝑇, 𝑝, 𝐶, 𝐶௦) = 𝑛(𝑇, 𝑝, 𝐶 𝐶௦⁄ , 𝜙).4 
Thus, at constant temperature 𝑇 and pressure 𝑝, which are the 
typical conditions under which measurements are performed, 
the total differential of the solution refractive index is given by 

𝑑𝑛 = ൬
𝜕𝑛

𝜕𝐶
൰

,்,ೞ

𝑑𝐶 + ൬
𝜕𝑛

𝜕𝐶௦
൰

,்,ೌ

𝑑𝐶௦

= ൜
𝜕𝑛

𝜕(𝐶 𝐶௦⁄ )
ൠ

,்,థ

𝑑 ൬
𝐶

𝐶௦
൰ + ൬

𝜕𝑛

𝜕𝜙
൰

,்,ೌ ೞ⁄

𝑑𝜙 . 

(𝑆. 54) 

Total differentials for the solute to surfactant molar ratio and 
the volume fraction are given by 

𝑑 ൬
𝐶

𝐶௦
൰ =

1

𝐶௦
𝑑𝐶 −

𝐶

𝐶௦
ଶ 𝑑𝐶௦ (𝑆. 55) 

and 

𝑑𝜙 = 𝑉ത𝑑𝐶 + 𝑉ത௦𝑑𝐶௦  . (𝑆. 56) 

Combining eqn (S.54)–(S.56) with 𝑅 = (𝜕𝑛 𝜕𝐶⁄ )், yields, 

𝑅 = 𝑉ത ൬
𝜕𝑛

𝜕𝜙
൰

,்,ೌ ೞ⁄

+
1

𝐶௦
൜

𝜕𝑛

𝜕(𝐶 𝐶௦⁄ )
ൠ

,்,థ

(𝑆. 57) 

and 

𝑅௦ = 𝑉ത௦ ൬
𝜕𝑛

𝜕𝜙
൰

,்,ೌ ೞ⁄

−
𝑉ത௦ 𝐶 𝐶௦⁄

(𝜙 − 𝜙)
൜

𝜕𝑛

𝜕(𝐶 𝐶௦⁄ )
ൠ

,்,థ

  . (𝑆. 58) 

2.2 Local equilibrium relations 

Consider an 𝑛-component mixture comprised of free water, 
free molecular solute, hydrated surfactant monomer, and a 
distribution of 𝑁 different micelle types, comprised of various 
numbers of solute and hydrated surfactant molecules. During a 
typical light scattering measurement, fluctuations in the 

concentrations of the mixture components occur and then relax 
by diffusion. As diffusion occurs, it is assumed the local 
equilibrium is achieved on a time scale much faster than that of  
diffusion. Hence, one may define the total free energy minimum 
for a mixture within a fixed, local control volume (sometimes 
described as material point) at constant temperature 𝑇 and 
pressure 𝑝. The re-equilibration process via self-assembly 
occurs very quickly, therefore, the system may be considered 
isolated (no mass or energy transfer into or out of the material 
point) on the time scale of equilibration. Hence, the total molar 
Gibbs free energy differential at constant volume, temperature, 
and pressure, is given by 

𝑑𝑔 = 𝜇𝑑𝐶, + 𝜇௦𝑑𝐶 + 𝜇𝑑𝐶 +  𝜇𝑑𝐶

ே

ୀଵ

= 0  , (𝑆. 59) 

where 𝐶, , 𝐶, 𝐶, and 𝐶  are molar concentrations for 
free solute, hydrated surfactant, solvent, and micelles of type 𝑘, 
respectively. 

For an incompressible fluid at constant volume, we have 

𝑉ത𝑑𝐶, + 𝑉ത௦𝑑𝐶 + 𝑉ത𝑑𝐶 +  𝑉ത𝑑𝐶

ே

ୀଵ

= 0  . (𝑆. 60) 

Here, 𝑉ഥ is the partial molar volume of the solvent. Solving eqn 
(S.60) for 𝑑𝐶 yields, 

𝑑𝐶 = −
𝑉ത

𝑉ത

𝑑𝐶, −
𝑉ത௦

𝑉ത

𝑑𝐶 − 
𝑉ത

𝑉ത

𝑑𝐶

ே

ୀଵ

= 0  . (𝑆. 61) 

The total concentrations of solute (a) and surfactant (s) are 
conserved, so that 

𝑑𝐶 = 𝑑𝐶, +  𝑛𝑑𝐶

ே

ୀଵ

= 0 (𝑆. 62) 

and 

𝑑𝐶௦ = 𝑑𝐶 +  𝑚𝑑𝐶

ே

ୀଵ

= 0  . (𝑆. 63) 

Combining eqn (S.59) and (S.61)–(S.63) yields 

𝜇 − 𝑛𝜇 − 𝑚𝜇௦ = 𝑉ത − 𝑛𝑉ത − 𝑚𝑉ത௦  . (𝑆. 64) 

Since the molar volume of a micelle type 𝑘 is given by 𝑉ഥ =

𝑛𝑉ഥ + 𝑚𝑉ഥ௦, eqn (E.6) yields 

𝜇 = 𝑛𝜇 + 𝑚𝜇௦ 

𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑁  . (𝑆. 65) 

In eqn (S.65) the chemical potentials are not uniquely defined, 
and may be expressed, for instance, according to 

𝜇 = ൬
𝜕𝑔

𝜕𝐶
൰

,்,ಯೖ

= ቆ
𝜕𝐹෨

𝜕𝐶
ቇ

்,ఓ,,ಯೖ

= ൬
𝜕𝐴

𝜕𝐶
൰

்,,ಯೖ

  , (𝑆. 66) 

where 𝐹෨  and 𝐴 are the extensive McMillan-Mayer and 
Helmholtz free energies, respectively. 
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 2.3 Osmotic pressure derivatives 

Mixtures of nonionic surfactants and hydrophobic solutes 
can be modelled as either ternary, single phase mixtures 
comprised of solute, surfactant, and solvent, or as n-component 
mixtures of free molecular solute, monomer surfactant, and a 
distribution of aggregates, containing various numbers of solute 
and surfactant molecules. Hence, the osmotic pressure of these 
mixtures can be defined as a function of either four or 𝑛 + 1 
independent, intensive variables according to 𝛱 =

𝛱(𝑇, 𝜇, 𝐶, 𝐶௦) = 𝛱(𝑇, 𝜇, 𝐶ଵ, 𝐶ଶ, . . . , 𝐶ିଵ). Using the chain 
rule, the gradient in the osmotic pressure can be expanded at 
constant 𝑇, 𝜇 

(𝜵𝛱)்,ఓ
= ൬

𝜕𝛱

𝜕𝐶
൰

்,ఓ

𝜵𝐶 + ൬
𝜕𝛱

𝜕𝐶௦
൰

்,ఓ

𝜵𝐶௦  . (𝑆. 67) 

Eqn (S.67) and the Gibbs-Duhem equation at constant 𝑇, 𝜇 
combine to yield  

൬
𝜕𝛱

𝜕𝐶
൰

்,ఓ

𝜵𝐶 + ൬
𝜕𝛱

𝜕𝐶௦
൰

்,ఓ

𝜵𝐶௦ =  𝐶൫𝜵𝜇൯
்,ఓ

ିଵ

ୀଵ

  . (𝑆. 68) 

Similarly, the micelle species chemical potentials can also be 
expressed as a function of either four or 𝑛 + 1 independent, 
intensive variables, according to  𝜇 = 𝜇(𝑇, 𝜇, 𝐶, 𝐶௦) =

𝜇(𝑇, 𝜇, 𝐶ଵ, 𝐶ଶ, . . . , 𝐶ିଵ) and the gradients in 𝜇  can also be 
expanded using the chain rule at constant 𝑇, 𝜇 

൫𝜵𝜇൯
்,ఓ

= ቆ
𝜕𝜇

𝜕𝐶
ቇ

்,ఓ

𝜵𝐶 + ቆ
𝜕𝜇

𝜕𝐶௦
ቇ

்,ఓ

𝜵𝐶௦  . (𝑆. 69) 

Combination of eqn (S.67)–(S.69) and expansion using the chain 
rule provides 

൬
𝜕𝛱

𝜕𝐶
൰

்,ఓ

=   𝐶 ቆ
𝜕𝜇

𝜕𝐶
ቇ

்,ఓ

ቆ
𝜕𝐶

𝜕𝐶
ቇ

ିଵ

ୀଵ

ିଵ

ୀଵ

(𝑆. 70) 

and 

൬
𝜕𝛱

𝜕𝐶௦
൰

்,ఓ

=   𝐶 ቆ
𝜕𝜇

𝜕𝐶
ቇ

்,ఓ

ቆ
𝜕𝐶

𝜕𝐶௦
ቇ

ିଵ

ୀଵ

ିଵ

ୀଵ

(𝑆. 71) 

In this work, the concentrations of free molecular solute and 
surfactant monomer are vanishingly small, so that eqn  (S.70) 
and (S.71) reduce to summations over 𝑁 micellar species 

൬
𝜕𝛱

𝜕𝐶
൰

்,ఓ

=   𝐶 ቆ
𝜕𝜇

𝜕𝐶
ቇ

்,ఓ

ቆ
𝜕𝐶

𝜕𝐶
ቇ

ே

ୀଵ

ே

ୀଵ

(𝑆. 72) 

and 

൬
𝜕𝛱

𝜕𝐶௦
൰

்,ఓ

=   𝐶 ቆ
𝜕𝜇

𝜕𝐶
ቇ

்,ఓ

ቆ
𝜕𝐶

𝜕𝐶௦
ቇ

ே

ୀଵ

ே

ୀଵ

(𝑆. 73) 

 

2.4 Chemical potential derivatives and driving forces for diffusion 

The driving force for diffusion of component 𝑖 in an n-
component, single phase, incompressible mixture may be 
written as 

𝑿 = −𝜵𝜇   , (𝑆. 74) 

where the chemical potential 𝜇  of species 𝑖 is a function of 𝑛 +

1 other independent, intensive variables 𝜇 =

𝜇(𝑇, 𝑝, 𝐶ଵ, 𝐶ଶ, . . . , 𝐶ିଵ) = 𝜇(𝑇, 𝜇, 𝐶ଵ, 𝐶ଶ, . . . , 𝐶ିଵ),4 and 𝜇 is 
the chemical potential of the solvent. Using the chain rule, one can 
expand eqn (S.74) according to 

𝑿 = − ൬
𝜕𝜇

𝜕𝑇
൰

,𝑪
𝜵𝑇 − ൬

𝜕𝜇

𝜕𝑝
൰

்,𝑪

𝜵𝑝 − (𝜵𝜇),் (𝑆. 75) 

or, equivalently, 

𝑿 = − ൬
𝜕𝜇

𝜕𝑇
൰

ఓ,𝑪
𝜵𝑇 − ൬

𝜕𝜇

𝜕𝜇
൰

்,𝑪

𝜵𝜇 − (𝜵𝜇)்,ఓ
  . (𝑆. 76) 

In eqn (S.75) and (S.76), the subscript 𝑪 = [𝐶ଵ, 𝐶ଶ, . . . , 𝐶ିଵ] 
indicates that the vector of component concentrations is held 
fixed. For an incompressible mixture, one can show 

൬
𝜕𝜇

𝜕𝑝
൰

்,𝑪

= 𝑉ത (𝑆. 77) 

and by using a chain rule expansion we have 

൬
𝜕𝜇

𝜕𝜇
൰

்,𝑪

=
(𝜕𝜇 𝜕𝑝⁄ )்,𝑪

(𝜕𝜇 𝜕𝑝⁄ )்,𝑪
=

𝑉ത

𝑉ത

  . (𝑆. 78) 

Eqn (S.75)–(S.78) combine to produce 

𝑿 = − ൬
𝜕𝜇

𝜕𝑇
൰

,𝑪
𝜵𝑇 − 𝑉ത𝜵𝑝 − (𝜵𝜇),்

= − ൬
𝜕𝜇

𝜕𝑇
൰

ఓ,𝑪
𝜵𝑇 −

𝑉ത

𝑉ത

𝜵𝜇 − (𝜵𝜇)்,ఓ
 . 

(𝑆. 79) 

At constant 𝑇, 𝜇, eqn (S.79) provides 

(𝜵𝜇),் = (𝜵𝜇)்,ఓ
− 𝑉ത(𝜵𝑝)்,ఓ

  , (𝑆. 80) 

and according to the Gibbs-Duhem equation at constant 𝑇, 𝜇, 
the total pressure gradient in the mixture is given by 

(𝜵𝑝)்,ఓ
= (𝜵𝛱)்,ఓ

=  𝐶൫𝜵𝜇൯
்,ఓ

ିଵ

ୀଵ

  . (𝑆. 81) 

Per McMillan-Mayer solution theory,1, 2 eqn (S.81) describes a 
total pressure gradient within a multicomponent mixture that is 
separated from pure solvent by a semi-permeable membrane, 
which is permeable to only the solvent. The total pressure 𝑝 of 
the mixture is equal to the osmotic pressure 𝛱, plus the 
pressure of the pure solvent 𝑝௪ , which is held constant with 𝜇. 
Hence (𝜵𝑝)்,ఓ

= [𝜵(𝑝௪ + 𝛱)]்,ఓ
= (𝜵𝛱)்,ఓ

. Eqn (S.80) 
and (S.81) combine to give 
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−(𝜵𝜇),் = −(𝜵𝜇)்,ఓ
+ 𝑉ത  𝐶൫𝜵𝜇൯

்,ఓ

ିଵ

ୀଵ

  . (𝑆. 82) 

Now, using eqn (S.78), hold 𝑇, 𝑝 constant, so that 

−(𝜵𝜇)்,ఓ
= −(𝜵𝜇),் +

𝑉ത

𝑉ത

(𝜵𝜇),்  . (𝑆. 83) 

Per the Gibbs-Duhem eqn at constant 𝑇, 𝑝 

(𝜵𝜇),் = − 
𝐶

𝐶
൫𝜵𝜇൯

,்

ିଵ

ୀଵ

  . (𝑆. 84) 

Combine eqn (S.83) and (S.84) with the solvent volume fraction 
𝐶𝑉ഥ = 1 − 𝜙 to find 

−(𝜵𝜇)்,ఓ
= −(𝜵𝜇),் −

𝑉ത

1 − 𝜙
 𝐶൫𝜵𝜇൯

,்

ିଵ

ୀଵ

  . (𝑆. 85) 

According to the chain rule, we have 

(𝜵𝜇),் =  ൬
𝜕𝜇

𝜕𝐶
൰

,்

𝜵𝐶

ିଵ

ୀଵ

(𝑆. 86) 

and 

(𝜵𝜇)்,ఓ
=  ൬

𝜕𝜇

𝜕𝐶
൰

்,ఓ

𝜵𝐶

ିଵ

ୀଵ

  . (𝑆. 87) 

Combine eqn (S.82), (S.86), and (S.87), so that 

൬
𝜕𝜇

𝜕𝐶
൰

,்

= ൬
𝜕𝜇

𝜕𝐶
൰

்,ఓ

− 𝑉ത  𝐶 ቆ
𝜕𝜇

𝜕𝐶
ቇ

்,ఓ

ିଵ

ୀଵ

  . (𝑆. 88) 

Now, combine eqn (S.85)–(S.87) to provide the elements of [𝐆] 

𝐺 = ൬
𝜕𝜇

𝜕𝐶
൰

்,ఓ

= ൬
𝜕𝜇

𝜕𝐶
൰

,்

+
𝑉ത

1 − 𝜙
 𝐶 ቆ

𝜕𝜇

𝜕𝐶
ቇ

,்

ିଵ

ୀଵ

 

𝑓𝑜𝑟 𝑖, 𝑘 = 1,2, … , 𝑛 − 1  . (𝑆. 89) 

Eqn (S.88) and (S.89) combine to yield 

൬
𝜕𝜇

𝜕𝐶
൰

,்

= (1 − 𝜙) ൬
𝜕𝜇

𝜕𝐶
൰

்,ఓ

 

𝑓𝑜𝑟 𝑖, 𝑘 = 1,2, … , 𝑛 − 1  . (𝑆. 90) 

Following de Groot and Mazur,5 the rate of entropy 
produced irreversibly by diffusion in an isothermal, non-
reacting, multicomponent mixture with no externally applied 
forces is defined by 

𝑇𝜎 = −  𝑱
 ∙ (𝜵𝜇),்



ୀଵ

≥ 0  . (𝑆. 91) 

Here, the molar species flux of component 𝑖 is given by 

𝑱
 = 𝐶(𝒗 − 𝒗)  , (𝑆. 92) 

and is defined relative to an arbitrary reference velocity 

𝒗 =  𝑎𝒗



ୀଵ

  , (𝑆. 93) 

where 𝒗  and 𝑎  are the respective velocity and normalized 
weighting factor for species 𝑖. 

The forces −(𝜵𝜇),்  and fluxes 𝑱
  in eqn (S.91) are not 

independent, since the flux and chemical potential gradient of 
the solvent, denoted by the subscript 𝑛, can be eliminated using 
the Gibbs-Duhem equation 

(𝜵𝜇),் = − 
𝐶

𝐶

(𝜵𝜇),்

ିଵ

ୀଵ

 (𝑆. 94) 

and the following relation between the fluxes 

𝑱
 = − 

𝐶

𝐶

𝑎

𝑎
𝑱



ିଵ

ୀଵ

  . (𝑆. 95) 

Eqn (S.91), (S.94), and (S.95) combine to provide the rate of 
entropy production in terms of independent driving forces and 
fluxes 

𝑇𝜎 = −  𝑱
 ∙ 𝑿



ିଵ

ୀଵ

. (𝑆. 96) 

where 

𝑿
 = −  𝐴



ିଵ

ୀଵ

(𝜵𝜇),்  , (𝑆. 97) 

and 

𝐴
 = 𝛿 +

𝑎

𝑎

𝐶

𝐶
  . (𝑆. 98) 

The independent fluxes and driving forces, described by eqn 
(S.92), (S.93), (S.97) and (S.98), are linked via the normalized 
reference velocity weighting factor 𝑎  and are therefore often 
referred to as conjugate pairs. 

By setting the weighing factor equal to the species volume 
fraction 𝑎 = 𝜙, one can define the following mean volume 
reference velocity, 

𝒗 =  𝜙𝒗



ୀଵ

  , (𝑆. 99) 

which is equal to zero for an incompressible mixture relative to 
a fixed-volume reference frame. Eqn (S.92), (S.97), and (S.98) 
combine with 𝑎 = 𝜙 and 𝒗 = 𝒗 = 𝟎  to provide the driving 
force, 

𝑿 = −  ቆ𝛿 +
𝐶𝑉ത

𝐶𝑉ത

ቇ

ିଵ

ୀଵ

(𝜵𝜇),்  , (𝑆. 100) 

and conjugate diffusive flux 

𝑱 = 𝐶𝒗   , (𝑆. 101) 
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defined relative to a volume-fixed reference frame, which 
closely approximates the fixed-laboratory frame in which 
experimental data is acquired. Eqn (S.100) combines with 
𝐶𝑉ഥ = 1 − 𝜙 to provide 

𝑿 = −(𝜵𝜇),் −
𝑉ത

1 − 𝜙
 𝐶(𝜵𝜇),்

ିଵ

ୀଵ

  , (𝑆. 102) 

which is identical to the result provided by Batchelor6 (cf. eqn 
(4.1) of his work). Finally, eqn (S.85) and (S.102) combine to 
yield 

𝑿 = −(𝜵𝜇)்,ఓ
  , (𝑆. 103) 

which describes the driving force for the diffusion of species 𝑖 in 
a multicomponent liquid, relative to a reference frame in which 
the net flux of material volume is zero, and the solvent is force-
free according to 

𝑿 = −(𝜵𝜇)்,ఓ
= 0  . (𝑆. 104) 

The summation in eqn (S.102) accounts for a contribution to 
the driving force that acts on component 𝑖 caused by solvent 
backflow, which inevitably occurs when a solute gradient is 
established in an incompressible mixture at constant 
temperature and pressure in a constant volume diffusion cell. 
Interestingly, when the same diffusion process is described 
using the McMillan-Mayer framework, the driving force on 
component 𝑖 is given by eqn (S.103) and the solvent backflow 
contribution is accounted for via an osmotic pressure gradient. 
One may imagine a 1-dimensional diffusion cell, separated by a 
semipermeable membrane (permeable only to the solvent) 
oriented parallel to the flux direction along the diffusion 
pathway. In this scenario, the membrane separates the 
multicomponent mixture at each local point from pure solvent, 
thereby maintaining a constant solvent chemical potential at 
each point along the diffusion path, so that the solvent is force-
free. Here, solvent passes through the membrane into the 
diffusion cell from the pure solvent reservoir and raises the 
osmotic pressure locally in proportion with the local solute 
concentration, thereby enhancing the thermodynamic driving 
force on component 𝑖 via a gradient in osmotic pressure, rather 
than by backflow of solvent at constant pressure. We note that 
the McMillan Mayer framework is useful here because of the 
simplicity of eqn (S.103) as compared with (S.102). 

2.5 Diffusivities 

2.5.1 Diffusion coefficient matrix [𝐃] 

In this section, the main solute diffusivity 𝐷 , given by eqn 
(75), is derived starting with eqn (69). Eqn (76)–(78) can be 
similarly derived to yield the complete matrix [𝐃]. Note, this 
appendix is a generalization of our previous derivation for 𝐷  
applied to dilute locally monodisperse micellar solutions.7 We 
begin with eqn (69) 

𝐷 =  𝑛𝐷
 ቐ൭1 +  𝑓𝜙

ே

ୀଵ

൱
𝜕𝐶

𝜕𝐶
+ 𝜙  ℎ

𝜕𝐶

𝜕𝐶

ே

ୀଵ

ቑ

ே

ୀଵ

  . (𝑆. 105) 

Here,  𝑛  and 𝐷
 are independent of 𝐶, enabling the following 

rearrangement of eqn (S.105) 

𝐷 = 
𝜕൫𝑛𝐷

𝐶൯

𝜕𝐶
൭1 +  𝑓𝜙

ே

ୀଵ

൱

ே

ୀଵ

+  𝑛𝐷
𝜙

ே

ୀଵ

ቌ ℎ

𝜕𝐶

𝜕𝐶

ே

ୀଵ

ቍ  . 

(𝑆. 106) 

The derivatives 𝜕൫𝑛𝐷
𝐶൯ 𝜕𝐶⁄ ൫1 + ∑ 𝑓𝜙

ே
ୀଵ ൯ and 

∑ ℎ 𝜕𝐶 𝜕𝐶⁄ே
ୀଵ  in eqn (H.2) are then rearranged using the 

product rule to yield 

𝐷 =
𝜕

𝜕𝐶
൝ 𝑛𝐷

𝐶 ൭1 +  𝑓𝜙

ே

ୀଵ

൱

ே

ୀଵ

ൡ

−  𝑛𝐷
𝐶

𝜕

𝜕𝐶
൭ 𝑓𝜙

ே

ୀଵ

൱

ே

ୀଵ

+  𝑛𝐷
𝜙

ே

ୀଵ

ቐ
𝜕

𝜕𝐶
ቌ ℎ𝐶

ே

ୀଵ

ቍ −  𝐶

𝜕ℎ

𝜕𝐶

ே

ୀଵ

ቑ . 

(𝑆. 107) 

For narrow micelle size distributions, the local species 
concentrations and volume fractions can be approximated 
using 𝐶 = 𝐶௧௧𝛿∗ and 𝜙 = 𝜙𝛿∗, where 𝐶௧௧  is the total 
micelle concentration and 𝛿∗ is a Kronecker delta function. The 
function 𝛿∗ is nonzero when 𝑖 = 𝑖∗, corresponding to a micelle 
species 𝑖∗ that represents the distribution mean and has 𝑛ഥ 
solutes, 𝑚ഥ  surfactants, radius 𝑅∗, and local concentration 𝐶௧௧. 
Inserting the Kronecker distribution to eqn (S.107) and using the 
sifting property, which selects a single micelle type 𝑖∗ from the 
distribution, provides 

𝐷 =
𝜕൫𝐶𝐷∗

 ൯

𝜕𝐶

(1 + 𝑓𝜙) + 𝐶𝐷∗
 𝜙ℎ

𝜕𝑙𝑛𝐶௧௧

𝜕𝐶
+ 𝐶𝐷∗

 𝜙𝐿  .  

(𝑆. 108) 

Similarly, one can derive 

𝐷௦ = 𝐶

𝜕𝐷∗


𝜕𝐶௦

(1 + 𝑓𝜙) + 𝐶𝐷∗
 𝜙ℎ

𝜕𝑙𝑛𝐶௧௧

𝜕𝐶௦
+ 𝐶𝐷∗

 𝜙𝐿௦  . (𝑆. 109) 

𝐷௦ = 𝐶௦

𝜕𝐷∗


𝜕𝐶

(1 + 𝑓𝜙) + 𝐶௦𝐷∗
 𝜙ℎ

𝜕𝑙𝑛𝐶௧௧

𝜕𝐶
+ 𝐶௦𝐷∗

 𝜙𝐿   . (𝑆. 110) 

and 

𝐷௦௦ =
𝜕൫𝐶௦𝐷∗

 ൯

𝜕𝐶௦

(1 + 𝑓𝜙) + 𝐶௦𝐷∗
 𝜙ℎ

𝜕𝑙𝑛𝐶௧௧

𝜕𝐶௦
+ 𝐶௦𝐷∗

 𝜙𝐿௦  . (𝑆. 111) 

where 

𝐿 =
𝜕𝑓

𝜕𝐶
+ ቈ

𝜕(ℎ∗ − 𝑓∗)

𝜕𝐶


ୀ∗

− ቆ
𝜕ℎ

𝜕𝐶
ቇ

ୀୀ∗

 . (𝑆. 112) 

and 
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𝐿௦ =
𝜕𝑓

𝜕𝐶௦
+ ቈ

𝜕(ℎ∗ − 𝑓∗)

𝜕𝐶௦


ୀ∗

− ቆ
𝜕ℎ

𝜕𝐶௦
ቇ

ୀୀ∗

 . (𝑆. 113) 

In eqn (S.108–S.113), 𝑓 = 𝑓∗∗ and ℎ = ℎ∗∗ account for 
interactions between micelles of the same type. For a ternary, 
single phase mixture in local equilibrium, 𝑓  and ℎ  can be 
written as functions of intensive state variables according to 
𝑓 = 𝑓(𝑇, 𝜇, 𝐶, 𝐶௦) = 𝑓(𝑇, 𝜇, 𝐶 𝐶௦⁄ , 𝜙) and ℎ =

ℎ(𝑇, 𝜇, 𝐶, 𝐶௦) = ℎ(𝑇, 𝜇, 𝐶 𝐶௦⁄ , 𝜙). Using the chain rule, 
the partial derivatives for 𝑓  with respect to 𝐶  and 𝐶௦ are given 
by 

𝜕𝑓

𝜕𝐶
=

𝜕𝑓

𝜕(𝐶 𝐶௦⁄ )

𝜕(𝐶 𝐶௦⁄ )

𝜕𝐶
+

𝜕𝑓

𝜕𝜙

𝜕𝜙

𝜕𝐶
 , (𝑆. 114) 

and 

𝜕𝑓

𝜕𝐶௦
=

𝜕𝑓

𝜕(𝐶 𝐶௦⁄ )

𝜕(𝐶 𝐶௦⁄ )

𝜕𝐶௦
+

𝜕𝑓

𝜕𝜙

𝜕𝜙

𝜕𝐶௦
 . (𝑆. 115) 

In eqn (S.114) and S.115), the volume fraction and molar ratio 
derivatives are evaluated to provide 

𝐶

𝜕𝑓

𝜕𝐶
=

𝐶

𝐶௦

𝜕𝑓

𝜕(𝐶 𝐶௦⁄ )
+

𝜕𝑓

𝜕𝜙
𝜙  , (𝑆. 116) 

and 

𝐶௦

𝜕𝑓

𝜕𝐶௦
= −

𝐶

𝐶௦

𝜕𝑓

𝜕(𝐶 𝐶௦⁄ )
+

𝜕𝑓

𝜕𝜙
(𝜙 − 𝜙) . (𝑆. 117) 

Eqn (S.116) and (S.117) combine to give 

𝐶

𝜕𝑓

𝜕𝐶
+ 𝐶௦

𝜕𝑓

𝜕𝐶௦
= 𝜙

𝜕𝑓

𝜕𝜙
 . (𝑆. 118) 

Similarly, one finds 

𝐶

𝜕ℎ

𝜕𝐶
+ 𝐶௦

𝜕ℎ

𝜕𝐶௦
= 𝜙

𝜕ℎ

𝜕𝜙
 . (𝑆. 119) 

Eqn (S.112), (S.113), (S.118), and (S.119) combine to yield 

𝐶𝐿 + 𝐶௦𝐿௦ = 𝜙𝐿 . (𝑆. 120) 

where 

𝐿 =
𝜕𝑓

𝜕𝜙
+ ቈ

𝜕(ℎ∗ − 𝑓∗)

𝜕𝜙


ୀ∗

− ቆ
𝜕ℎ

𝜕𝜙
ቇ

ୀୀ∗

 . (𝑆. 121) 

Differentiating the Stokes Einstein equation 𝐷∗
 = 𝑘𝑇 (6𝜋𝜂𝑅∗)⁄ , 

one finds 

𝜕𝑙𝑛𝐷∗


𝜕𝑙𝑛𝐶
= −

𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
 . (𝑆. 122) 

and 

𝜕𝑙𝑛𝐷∗


𝜕𝑙𝑛𝐶௦
=

𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
 . (𝑆. 123) 

Furthermore, the total micelle concentration is differentiated 
according to 

𝜕𝑙𝑛𝐶௧௧

𝜕𝑙𝑛𝐶
=

𝜙

𝜙
− 3

𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
 . (𝑆. 124) 

and 

𝜕𝑙𝑛𝐶௧௧

𝜕𝑙𝑛𝐶௦
= 1 −

𝜙

𝜙
+ 3

𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
 . (𝑆. 125) 

Finally, eqn (S.108)–(S.111), (S.120), and (S.122)–(S.125) yield  

𝐷

𝐷∗
 = 1 + 𝑓𝜙 − ℳ  , (𝑆. 126) 

𝐷௦

𝐷∗
 =

𝐶

𝐶௦
൛൫𝐴ሚ + 𝑔൯𝜙 + ൣ(𝑓 + 𝑔)𝐴ሚ + 𝐿൧𝜙ଶ + ℳൟ  , (𝑆. 127) 

𝐷௦

𝐷∗
 = −

𝐶௦

𝐶
ℳ  , (𝑆. 128) 

and 

𝐷௦௦

𝐷∗
 = 1 + ൫𝐴ሚ + 𝑓 + 𝑔൯𝜙 + ൣ(𝑓 + 𝑔)𝐴ሚ + 𝐿൧𝜙ଶ + ℳ , (𝑆. 129) 

where the function ℳis given by  

ℳ =
𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶

[1 + (𝑓 + 3ℎ)𝜙] − ℎ𝜙 − 𝐶𝐿𝜙 , (𝑆. 130) 

and 

ℎ = 𝐴ሚ + 𝑔 + (𝑓 + 𝑔)𝐴ሚ𝜙  , (𝑆. 131) 

2.5.2 Long-time self (𝑫𝒔) and gradient (𝑫𝒄) diffusivities 

In this section, gradient and long-time self diffusion 
coefficients (𝐷  and 𝐷௦, respectively) for a monodisperse 
particle suspension are derived by evaluating the diffusive flux 
for a polydisperse colloidal suspension comprising 𝑁 different 
particle types and subsequently applying a delta distribution 
function. We begin by considering a polydisperse colloidal 
suspension comprising 𝑁 different particle types. The total 
diffusive flux 𝑱 is determined by summing over all of the species 
fluxes 𝑱  according to 

−𝑱 = −  𝑱

ே

ୀଵ

=   𝐷𝜵𝜙

ே

ୀଵ

ே

ୀଵ

  . (𝑆. 132) 

where the diffusion coefficient matrix 𝐷  is given by combining 
eqn (49), (59), and (66)  to provide 

𝐷

𝐷
 = 𝛿 ൭1 +  𝑓𝜙

ே

ୀଵ

൱ + ℎ𝜙 . (𝑆. 133) 

With the function ℎ  given by 

ℎ

𝜆
ଷ = 𝐴ሚ + 𝑔 + ൫𝐴ሚ𝑓 + 𝑔𝐴ሚ൯𝜙  

ே

ୀଵ

. (𝑆. 134) 

The species concentration gradient is expanded using the chain 
rule: 𝜵𝜙 = 𝜕𝜙 𝜕𝜙⁄ 𝜵𝜙 and combined with eqn (S.132)–
(S.134) to yield 
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−𝑱 =  𝐷
 ቐ𝛿 ൭1 +  𝑓𝜙

ே

ୀଵ

൱
𝜕𝜙

𝜕𝜙
+ 𝜙  ℎ

𝜕𝜙

𝜕𝜙

ே

ୀଵ

ቑ

ே

ୀଵ

𝜵𝜙  .  

(𝑆. 135) 

Here, 𝐷
 is independent of 𝜙, enabling the following re-

arrangement of eqn (I.4) 

−𝑱 = 
𝜕൫𝐷

𝜙൯

𝜕𝜙
൭1 +  𝑓𝜙

ே

ୀଵ

൱ 𝜵𝜙

ே

ୀଵ

+  𝐷
𝜙

ே

ୀଵ

ቌ ℎ

𝜕𝜙

𝜕𝜙

ே

ୀଵ

ቍ 𝜵𝜙  . 

(𝑆. 136) 

The derivatives 𝜕൫𝐷
𝜙൯ 𝜕𝜙⁄ ൫1 + ∑ 𝑓𝜙

ே
ୀଵ ൯ and 

∑ ℎ 𝜕𝜙 𝜕𝜙⁄ே
ୀଵ  in eqn (S.136) are then re-arranged using the 

product rule to provide 

−𝑱 =
𝜕

𝜕𝜙
൝ 𝐷

𝜙 ൭1 +  𝑓𝜙

ே

ୀଵ

൱

ே

ୀଵ

ൡ 𝜵𝜙

−  𝐷
𝜙

𝜕

𝜕𝜙
൭ 𝑓𝜙

ே

ୀଵ

൱ 𝜵𝜙

ே

ୀଵ

+  𝐷
𝜙

ே

ୀଵ

ቐ
𝜕

𝜕𝜙
ቌ ℎ𝜙

ே

ୀଵ

ቍ

−  𝜙

𝜕ℎ

𝜕𝜙

ே

ୀଵ

ቑ 𝜵𝜙  . 

(𝑆. 137) 

The Kronecker delta distribution 𝜙 = 𝜙𝛿∗ is combined with 
eqn (S.137) to provide 

−𝑱 = 𝐷∗
 ൛1 + ൫𝐴ሚ + 𝑓 + 𝑔൯𝜙 + ൣ(𝑓 + 𝑔)𝐴ሚ + 𝐿൧𝜙ଶൟ𝜵𝜙 , (𝑆. 138) 

where 

𝐿 =
𝜕𝑓

𝜕𝜙
+ ቈ

𝜕(ℎ∗ − 𝑓∗)

𝜕𝜙


ୀ∗

− ቆ
𝜕ℎ

𝜕𝜙
ቇ

ୀୀ∗

 . (𝑆. 139) 

Eqn (S.138) describes gradient diffusion in a monodisperse 
colloidal dispersion according to the diffusivity 𝐷 , 

𝐷

𝐷∗
 = 1 + ൫𝐴ሚ + 𝑓 + 𝑔൯𝜙 + ൣ(𝑓 + 𝑔)𝐴ሚ + 𝐿൧𝜙ଶ  , (𝑆. 140) 

To determine the long-time self diffusion coefficient 𝐷௦, 
again consider a multicomponent mixture with 𝑁 distinct 
colloidal species. However, in this scenario, a thermodynamic 
driving forces acts only on the species 𝑖, which is present in 
vanishingly small amount such that 𝜙 = 0, and the remaining 
species are force free. The flux of species 𝑖 for this case is given 
by 

−𝑱 = 𝐷௦𝜵𝜙 =  𝐷𝜵𝜙

ே

ୀଵ

  . (𝑆. 141) 

Eqn (S.133) and (S.141) combine with 𝜙 = 0 to provide 

𝐷௦

𝐷
 = 1 +  𝑓𝜙

ே

ୀଵ

  . (𝑆. 142) 

For mixtures of monodisperse particles 𝑓 = 𝑓, so that the 
long-time self diffusion coefficient at arbitrary concentration is 
given by 

𝐷௦

𝐷
 = 1 + 𝑓𝜙  , (𝑆. 143) 

S3 Derivations for limiting special cases 

3.1 Scattering functions 𝑩 and 𝑹𝟗𝟎 for locally monodisperse 
micelles 

In this section, the mode amplitude ratio 𝐵, and the Rayleigh 
ratio 𝑅ଽ are derived in the limit as the local micelle 
polydispersity approaches zero. First, eqn (34)–(36) and (51)–
(53) combine to produce the elements of the diagonalized 
chemical potential derivative matrix ൣ𝐆൧ 

𝐶𝐺 = ൬
𝜕𝛱

𝜕𝐶
൰

்,ఓ

+
𝐶

𝐶௦
𝑃௦

ଶ ൬
𝜕𝛱

𝜕𝐶௦
൰

்,ఓ

− 𝐶௦𝐺௦ ൬
𝐶

𝐶௦
𝑃௦ − 1൰

ଶ

 

(𝑆. 144) 

and 

𝐶௦𝐺௦ = ൬
𝜕𝛱

𝜕𝐶௦
൰

்,ఓ

+
𝐶௦

𝐶
𝑃௦

ଶ ൬
𝜕𝛱

𝜕𝐶
൰

்,ఓ

− 𝐶𝐺௦ ൬
𝐶௦

𝐶
𝑃௦ − 1൰

ଶ

 

(𝑆. 145) 

In the limit as the local micelle polydispersity approaches zero, 
𝐺௦ → −∞, so that eqn (27), (85), (90), (S.144) and (S.145) 
combine to yield the ratio 

𝐵 = 0  , (𝑆. 146) 

and eqn (26), (84), and (S.146) provide the field correlation 
function 

ห𝑔(ଵ)(𝒒, 𝑡)ห = 𝑒𝑥𝑝൛−𝑞ଶ𝐷∗
 [1 + (𝑓 + ℎ)𝜙 + 𝐿𝜙ଶ]𝑡ൟ  , (𝑆. 147) 

 
Now, turning our attention toward the Rayleigh ratio, a general 
form for the osmotic pressure in a mixture of monodisperse 
micelles is given by 

𝛱

𝑁𝑘𝑇
= 𝐶௧௧𝑍(𝜙)  , (𝑆. 148) 

Differentiating eqn (S.148) with respect to either 𝐶  or 𝐶௦ and 
combining the results with eqn (85) and (S.145) yields 
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𝐶௦
ଶ𝐺௦ = 𝐶 ൬

𝜕𝛱

𝜕𝐶
൰

்,ఓ

+ 𝐶௦ ൬
𝜕𝛱

𝜕𝐶௦
൰

்,ఓ

= 𝐶௧௧𝑁𝑘𝑇 ቊቈ
𝜕𝑍(𝜙)

𝜕𝑙𝑛𝐶
+

𝜕𝑍(𝜙)

𝜕𝑙𝑛𝐶௦


+ 𝑍(𝜙) ൬
𝜕𝑙𝑛𝐶௧௧

𝜕𝑙𝑛𝐶
+

𝜕𝑙𝑛𝐶௧௧

𝜕𝑙𝑛𝐶௦
൰ቋ   .                 

(𝑆. 149) 

Differentiation of the total micelle concentration 𝐶௧௧ = 𝐶௦ 𝑚ഥ⁄  
provides 

𝜕𝑙𝑛𝐶௧௧

𝜕𝑙𝑛𝐶
= − 

𝜕𝑙𝑛𝑚ഥ

𝜕𝑙𝑛𝐶
 (𝑆. 150) 

and 

𝜕𝑙𝑛𝐶௧௧

𝜕𝑙𝑛𝐶௦
= 1 − 

𝜕𝑙𝑛𝑚ഥ

𝜕𝑙𝑛𝐶௦
   . (𝑆. 151) 

As argued in our previous work,7 if the aggregation number is a 
univariate function of the solute to surfactant molar ratio 𝐶 𝐶௦⁄  
at constant temperature and pressure, then the aggregation 
number derivatives are related via 

𝜕𝑙𝑛𝑚ഥ

𝜕𝑙𝑛𝐶௦
= − 

𝜕𝑙𝑛𝑚ഥ

𝜕𝑙𝑛𝐶
 . (𝑆. 152) 

Hence, eqn (S.150)–(S.152) combine to give 

𝜕𝑙𝑛𝐶௧௧

𝜕𝑙𝑛𝐶
+

𝜕𝑙𝑛𝐶௧௧

𝜕𝑙𝑛𝐶௦
= 1 . (𝑆. 153) 

Furthermore, the compressibility factor derivatives in eqn 
(S.149) can be expanded using the chain rule, so that 

𝜕𝑍(𝜙)

𝜕𝑙𝑛𝐶
+

𝜕𝑍(𝜙)

𝜕𝑙𝑛𝐶௦
= 𝜙

𝑑𝑍(𝜙)

𝑑𝜙
൬

𝜕𝑙𝑛𝜙

𝜕𝑙𝑛𝐶
+

𝜕𝑙𝑛𝜙

𝜕𝑙𝑛𝐶௦
൰ . (𝑆. 154) 

Differentiation of the volume fraction 𝜙 = 𝐶𝑉ഥ + 𝐶௦𝑉ഥ௦  with 
respect to 𝐶  gives 

𝜕𝑙𝑛𝜙

𝜕𝑙𝑛𝐶
=

𝜙

𝜙
 . (𝑆. 155) 

Now, differentiating with respect to 𝐶௦ and using 𝐶௦𝑉ഥ௦ = 𝜙 −

𝜙, we have 

𝜕𝑙𝑛𝜙

𝜕𝑙𝑛𝐶௦
= 1 −

𝜙

𝜙
 . (𝑆. 156) 

Hence, eqn (S.155) and (S.156) combine to provide 

𝜕𝑙𝑛𝜙

𝜕𝑙𝑛𝐶
+

𝜕𝑙𝑛𝜙

𝜕𝑙𝑛𝐶௦
= 1 . (𝑆. 157) 

Eqn (S.149), (S.153), and (S.157) combine to produce 

𝐶௦
ଶ𝐺௦

𝐶௧௧𝑁𝑘𝑇
= 𝜙

𝑑𝑍(𝜙)

𝑑𝜙
+ 𝑍(𝜙) =

𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
  . (𝑆. 158) 

The diagonalized refractive index increment 𝑅௦  is evaluated 
using eqn (31)–(33) and (85) 

𝑅௦ =
𝜙

𝐶௦
൬

𝜕𝑛

𝜕𝜙
൰

,்,ೌ ೞ⁄

. (𝑆. 159) 

Finally, eqn (39), (S.146), (S.158), (S.159), and 𝜙 = 𝑁 𝐶௦ 𝑚⁄ 𝑉∗ 
yield 

𝑅ଽ =
4𝜋ଶ𝑛ଶ

𝜆
ସ ൬

𝜕𝑛

𝜕𝜙
൰

,்,ೌ ೞ⁄

ଶ

𝑉∗𝜙 ቊ
𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
ቋ

ିଵ

  . (𝑆. 160) 

3.2 Onsager matrix [𝐋] for locally monodisperse micelles 

The main Onsager coefficient 𝐿  in eqn (99) is derived in this 
appendix. Eqn (100) and (101) can be derived using a similar 
approach to provide the complete Onsager matrix [𝐋]. We 
begin by evaluating the determinant of the chemical potential 
derivative matrix [𝐆] using eqn (51)–(53) 

𝐶𝐶௦|𝑮| = ൬
𝜕𝛱

𝜕𝐶
൰

்,ఓ

൬
𝜕𝛱

𝜕𝐶௦
൰

்,ఓ

− 𝐺௦ ൝𝐶 ൬
𝜕𝛱

𝜕𝐶
൰

்,ఓ

+ 𝐶௦ ൬
𝜕𝛱

𝜕𝐶௦
൰

்,ఓ

ൡ  . (𝑆. 161) 

Eqn (53), (95), and (S.161) combine in the limit as the local 
micelle polydispersity approaches zero, so that 𝐺௦ → −∞ , to 
produce 

𝐿 =
𝐶

ଶ𝐷 + 𝐶𝐶௦𝐷௦

𝐶 ൬
𝜕𝛱
𝜕𝐶

൰
்,ఓ

+ 𝐶௦ ൬
𝜕𝛱
𝜕𝐶௦

൰
்,ఓ

  . (𝑆. 162)
 

Per eqn (S.149) and (S.158) 

𝐶 ൬
𝜕𝛱

𝜕𝐶
൰

்,ఓ

+ 𝐶௦ ൬
𝜕𝛱

𝜕𝐶௦
൰

்,ఓ

= 𝐶௧௧𝑁𝑘𝑇 ቊ
𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
ቋ  . (𝑆. 163) 

Eqn (S.162) and (S.163) combine with 𝐶 = 𝑛ഥ𝐶௧௧  to give 

𝐿 =
𝑛തଶ𝐶௧௧

𝑁𝑘𝑇
൬𝐷 +

𝐶௦

𝐶
𝐷௦൰ ቊ

𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
ቋ

ିଵ

  . (𝑆. 164) 

Using eqn (75)–(78), (84), we have 

𝐷 +
𝐶௦

𝐶
𝐷௦ = 𝐷௦௦ +

𝐶

𝐶௦
𝐷௦ = 𝐷ା  . (𝑆. 165) 

As discussed in the main text, and in section 2.5.2 of SI, the 
eigenvalue 𝐷ା is equal to the gradient diffusion coefficient for 
monodisperse particle dispersions. Hence, 𝐷ା can be described 
using the following generalized Stokes-Einstein equation 

𝐷ା = 𝐷∗
 𝐾(𝜙)

𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
  . (𝑆. 166) 

Eqn (S.164)–(S.166) combine to yield 

𝐿 =
𝑛തଶ𝐶௧௧𝐷∗



𝑁𝑘𝑇
𝐾(𝜙)  . (𝑆. 167) 

This approach may be used to derive the remaining Onsager 
coefficients, applicable to locally monodisperse mixtures at arbitrary 
concentration: 
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𝐿௦ = 𝐿௦ = 𝑛ത𝑚ഥ𝐶௧௧ ቆ
𝐷∗



𝑁𝑘𝑇
ቇ 𝐾(𝜙) (𝑆. 168) 

and 

𝐿௦௦ = 𝑚ഥ ଶ𝐶௧௧ ቆ
𝐷∗



𝑁𝑘𝑇
ቇ 𝐾(𝜙) . (𝑆. 169) 

3.3 [𝐆] in the tracer limit 

In this section, we provide a detailed derivation for [𝐆] in 
the tracer limit, given by eqn (128)–(130). We begin with eqn 
(52) 

𝐺௦ = ൬
𝑁𝑘𝑇

𝑚ଵ
൰ ቐ

1

𝐶

𝜕𝑙𝑛𝐶ଵ

𝜕𝑙𝑛𝐶
+  𝐴ଵ ቆ

𝜕𝐶

𝜕𝐶
ቇ

ே

ୀଵ

ቑ  . (𝑆. 170) 

The derivation in this section is simplified by introducing the 
following function 

𝐴ሚଵ = (1 − 𝜙)𝐴ଵ  , (𝑆. 171) 

so that eqn (S.170) can be rewritten as 

𝑚ଵ(1 − 𝜙)𝐺௦

𝑁𝑘𝑇
=

(1 − 𝜙)

𝐶

𝜕𝑙𝑛𝐶ଵ

𝜕𝑙𝑛𝐶
+  𝐴ሚଵ ቆ

𝜕𝐶

𝜕𝐶
ቇ

ே

ୀଵ

  . (𝑆. 172) 

The summation in eqn (S.172) is then rearranged, using the 
product rule, to the following more amenable form: 

 𝐴ሚଵ ቆ
𝜕𝐶

𝜕𝐶
ቇ

ே

ୀଵ

=
𝜕

𝜕𝐶
ቌ 𝐶𝐴ሚଵ

ே

ୀଵ

ቍ −  𝐶 ቆ
𝜕𝐴ሚଵ

𝜕𝐶
ቇ

ே

ୀଵ

  . (𝑆. 173) 

For micelle distributions that are monomodal and narrow, the 
micelle distribution function can be reasonable approximated 
using a Kronecker delta distribution function 𝐶 = 𝐶௧௧𝛿∗ . 
According to this definition, 𝐶  is nonzero only when the index 
𝑗 = 𝑗∗, which denotes a micelle type representative of the 
distribution mean and characterized as having 𝑛ഥ solutes, 𝑚ഥ  
surfactants, radius 𝑅∗, and concentration 𝐶௧௧, all of which are 
functions of composition (𝐶 𝐶௦⁄ ). Inserting the Kronecker 
distribution into eqn (S.173) yields, 

 𝐴ሚଵ ቆ
𝜕𝐶

𝜕𝐶
ቇ

ே

ୀଵ

=
𝜕

𝜕𝐶
ቌ 𝐶௧௧𝛿∗𝐴ሚଵ

ே

ୀଵ

ቍ

−  𝐶௧௧𝛿∗ ቆ
𝜕𝐴ሚଵ

𝜕𝐶
ቇ

ே

ୀଵ

  .                            (𝑆. 174) 

Using the sifting property, which selects a micelle type 𝑗∗ from 
a set of 𝑁 different micelle types, the summations on the right-
hand side of eqn (S.174) are evaluated to give  

 𝐴ሚଵ ቆ
𝜕𝐶

𝜕𝐶
ቇ

ேିଵ

ୀଵ

=
𝜕

𝜕𝐶
൫𝐶௧௧𝐴ሚଵ∗൯ − 𝐶௧௧ ቆ

𝜕𝐴ሚଵ

𝜕𝐶
ቇ

ୀ∗

  . (𝑆. 175) 

The derivative 𝜕൫𝐶௧௧𝐴෨ଵ∗൯ 𝜕𝐶⁄  in eqn (S.175) can be expanded 
with the product rule to provide 

 𝐴ሚଵ ቆ
𝜕𝐶

𝜕𝐶
ቇ

ே

ୀଵ

= 𝐴ሚଵ∗
𝜕𝐶௧௧

𝜕𝐶
+ 𝐶௧௧ ൝

𝜕𝐴ሚଵ∗

𝜕𝐶
− ቆ

𝜕𝐴ሚଵ

𝜕𝐶
ቇ

ୀ∗

ൡ  . (𝑆. 176) 

In order to determine the first term on the right-hand side of 
eqn (S.176) we start by combining eqn (49), (125), and (S.171) 
with 𝑘 = 1 to give 

𝐴ሚଵ =
𝜋

6
൛𝑑ଵ

ଷ + 𝑑
ଷ + 𝑑ଵ

ଷ𝑑
ଷ𝜂

+ 3𝑑ଵ𝑑ൣ𝑑ଵ(1 + 𝑑ଵ𝜂ଶ)൫1 + 𝑑
ଶ𝜂ଵ൯

+ 𝑑൫1 + 𝑑𝜂ଶ൯൫1 + 𝑑ଵ
ଶ𝜂ଵ൯൧

+ 9𝑑ଵ
ଶ𝑑

ଶ𝜂ଶ(1 + 𝑑ଵ𝜂ଶ)൫1 + 𝑑𝜂ଶ൯ൟ  .   

(𝑆. 177) 

where 𝑑ଵ and 𝑑  are the respective diameters of a solute-free 
and a type 𝑗 particle, 

𝜂ఔ =
𝜉ఔ

1 − 𝜙
  , (𝑆. 178) 

and 

𝜉ఔ =  𝜙

ே

ୀଵ

𝑑
ఔିଷ  . (𝑆. 179) 

Using the Kronecker distribution, so that 𝐶 = 𝐶௧௧𝛿∗ and 𝜙 =

𝐶௧௧𝑁𝑉𝛿∗, eqn (S.177)–(S.179) combine to yield 

𝐴ሚଵ

𝜋
6

𝑑ଵ
ଷ

= ቆ
𝑑

𝑑ଵ
ቇ

ଷ

+

ቊ1 + ቈ൬
𝑑

𝑑∗
൰

ଷ

− 1 𝜙ቋ

(1 − 𝜙)

+ 3 ቆ
𝑑

𝑑ଵ
ቇ

1 + ൬
𝑑ଵ
𝑑∗

− 1൰ 𝜙൨ ቊ1 + ቈ൬
𝑑

𝑑∗
൰

ଶ

− 1 𝜙ቋ

(1 − 𝜙)ଶ

+ 3 ቆ
𝑑

𝑑ଵ
ቇ

ଶ 1 + ൬
𝑑

𝑑∗
− 1൰ 𝜙൨ ቊ1 + ቈ൬

𝑑ଵ
𝑑∗

൰
ଶ

− 1 𝜙ቋ

(1 − 𝜙)ଶ

+ 9𝜙 ቆ
𝑑

ଶ

𝑑ଵ𝑑∗
ቇ

1 + ൬
𝑑ଵ
𝑑∗

− 1൰ 𝜙൨ 1 + ൬
𝑑

𝑑∗
− 1൰ 𝜙൨

(1 − 𝜙)ଷ
  .   

(𝑆. 180) 

Imposing 𝑗 = 𝑗∗ onto eqn (S.180)  provides 

𝐴ሚ∗

𝜋
6

𝑑ଵ
ଷ

= ቆ
𝑑∗

𝑑ଵ
ቇ

ଷ

+
1

(1 − 𝜙)
+ 3 ቆ

𝑑∗

𝑑ଵ
ቇ

1 + ൬
𝑑ଵ
𝑑∗

− 1൰ 𝜙൨

(1 − 𝜙)ଶ

+ 3 ቆ
𝑑∗

𝑑ଵ
ቇ

ଶ ቊ1 + ቈ൬
𝑑ଵ
𝑑∗

൰
ଶ

− 1 𝜙ቋ

(1 − 𝜙)ଶ

+ 9𝜙 ቆ
𝑑∗

𝑑ଵ
ቇ

1 + ൬
𝑑ଵ
𝑑∗

− 1൰ 𝜙൨

(1 − 𝜙)ଷ
  .   

(𝑆. 181) 
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With the aid of Mathematica, eqn (S.181) simplifies to 

𝐴ሚଵ∗

𝜋
6

𝑑ଵ
ଷ

= 𝜆ଷ +
3𝜆ଶ

(1 − 𝜙)
+

3𝜆(1 + 𝜙 − 2𝜙ଶ)

(1 − 𝜙)ଷ
+

(1 + 2𝜙)ଶ

(1 − 𝜙)ଷ
 ,  

(𝑆. 182) 

where 𝜆 = 𝑑∗ 𝑑ଵ⁄  is a micelle size ratio. Multiplying eqn (S.182) 
by 𝜆ିଷ provides 

𝐴ሚଵ∗

𝜋
6

𝑑∗
ଷ

= 1 +
3𝜆ିଵ

(1 − 𝜙)
+

3𝜆ିଶ(1 + 𝜙 − 2𝜙ଶ)

(1 − 𝜙)ଷ
+

𝜆ିଷ(1 + 2𝜙)ଶ

(1 − 𝜙)ଷ
  

(𝑆. 183) 

Furthermore, using eqn (S.150) and eqn (A.16) from Appendix A 
in our previous work,7 we find 

𝜕𝑙𝑛𝐶௧௧

𝜕𝑙𝑛𝐶
=

𝜙

𝜙
− 3

𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
 . (𝑆. 184) 

Eqn (S.183), (S.184), and 𝜙 = 𝐶௧௧𝑁 𝜋 6⁄ 𝑑∗
ଷ combine to 

provide the first term on the right-hand side of eqn (S.176), 

𝐴ሚଵ∗
𝜕𝐶௧௧

𝜕𝐶
=  

1

𝐶
ቊ1 +

3𝜆ିଵ

(1 − 𝜙)
+

3𝜆ିଶ(1 + 𝜙 − 2𝜙ଶ)

(1 − 𝜙)ଷ

+
𝜆ିଷ(1 + 2𝜙)ଶ

(1 − 𝜙)ଷ
ቋ ቆ𝜙 − 3𝜙

𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
ቇ .   (𝑆. 185) 

Now, focusing on the second term of eqn (S.176), 
differentiation of eqn (S.180) and (S.182) with respect to solute 
concentration 𝐶  is accomplished via symbolic computation 
performed using Mathematica to provide 

𝐶௧௧ ൝
𝜕𝐴ሚଵ∗

𝜕𝐶
− ቆ

𝜕𝐴ሚଵ

𝜕𝐶
ቇ

ୀ∗

ൡ

=
1

𝐶
ቊ1 +

𝜆ିଵ(2 − 3𝜙 + 𝜙ଷ)

(1 − 𝜙)ଷ

+
𝜆ିଶ(1 + 6𝜙 − 6𝜙ଶ − 𝜙ଷ)

(1 − 𝜙)ଷ

+
𝜆ିଷ𝜙(2 + 𝜙)ଶ

(1 − 𝜙)ଷ
ቋ 3𝜙

𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
  ,                 (𝑆. 186) 

where we have used 𝜕𝑙𝑛𝑅∗ 𝜕𝑙𝑛𝐶⁄ = 𝜕𝑙𝑛𝑑∗ 𝜕𝑙𝑛𝐶⁄ . 
Combination of eqn (S.172), (S.176), (S.185), and (S.186), again 
via symbolic computation using Mathematica, yield 

𝑚ଵ(1 − 𝜙)𝐺௦

𝑁𝑘𝑇
= (1 − 𝜙)

1

𝐶

𝜕𝑙𝑛𝐶

𝜕𝑙𝑛𝐶
+ 𝐴ሚ(𝜆, 𝜙)

𝜙

𝐶

− 𝐵෨(𝜆, 𝜙)
1

𝐶

𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
                                    (𝑆. 187) 

where 

𝐴ሚ(𝜆, 𝜙) = 1 +
3𝜆ିଵ

(1 − 𝜙)
+

3𝜆ିଶ(1 + 𝜙 − 2𝜙ଶ)

(1 − 𝜙)ଷ
+

𝜆ିଷ(1 + 2𝜙)ଶ

(1 − 𝜙)ଷ
 

(𝑆. 188) 

and 

𝐵෨(𝜆, 𝜙) = 3𝜙 ቊ𝜆ିଵ +
𝜆ିଶ(2 + 𝜙)

(1 − 𝜙)
+

𝜆ିଷ(1 + 𝜙 + 𝜙ଶ)

(1 − 𝜙)ଶ
ቋ . (𝑆. 189) 

To evaluate the solute-free micelle derivative in eqn (S.187), 
consider the Poisson distribution, given by 

𝐶 =
𝐶௦

𝑚ഥ

𝑛ത

𝑛!
𝑒𝑥𝑝(−𝑛ത)  . (𝑆. 190) 

where 𝑛ഥ, the average number of solutes per micelle, is equal to 
the distribution variance. The Poisson distribution, which is 
derived assuming ideal mixing between solute and surfactant 
within micelles, and is considered valid when  𝑛ഥ ≪ 𝑚ഥ ,8, 9 is 
useful here because the Poisson variance approaches zero 𝑛ഥ →

0 in the tracer limit as 𝐶 → 0, causing eqn (S.190) to approach 
a Kronecker delta function 

𝑙𝑖𝑚
ೌ→

𝐶௦

𝑚ഥ

𝑛ത

𝑛!
𝑒𝑥𝑝(−𝑛ത) =

𝐶௦

𝑚ଵ
𝛿ଵ  . (𝑆. 191) 

Hence, in the tracer limit, the Poisson distribution becomes 
consistent with the delta distribution applied earlier in this 
derivation to evaluate the summation given by eqn (S.173). 
Differentiation of eqn (S.191) for 𝑖 = 1 yields  

𝜕𝑙𝑛𝐶ଵ

𝜕𝑙𝑛𝐶
= 1 − (𝑛ത + 1) ൬1 +

𝜕𝑙𝑛𝑚ഥ

𝜕𝑙𝑛𝐶
൰ . (𝑆. 192) 

Combining eqn (S.192) with eqn (A.16) from Appendix A in our 
previous work,7 we have 

𝜕𝑙𝑛𝐶ଵ

𝜕𝑙𝑛𝐶
= 1 − (𝑛ത + 1) ቆ1 + 3

𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
−

𝜙

𝜙
ቇ . (𝑆. 193) 

Eqn (S.187) and (S.193) combine to provide 

𝑚ଵ(1 − 𝜙)𝐺௦

𝑁𝑘𝑇
= −(1 − 𝜙)

𝑛ത

𝐶
+ ቈ𝐴ሚ(𝜆, 𝜙) +

(1 − 𝜙)(𝑛ത + 1)

𝜙


𝜙

𝐶

− [𝐵෨(𝜆, 𝜙) + 3(1 − 𝜙)(𝑛ത + 1)]
1

𝐶

𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
 

(𝑆. 194) 

In the limit as 𝐶 → 0, for which 𝜆 → 1, 𝑛ഥ → 0, 𝑛ഥ 𝐶⁄ → 𝑚ଵ 𝐶௦⁄ , 
1 𝐶⁄ ൫𝜕𝑙𝑛𝑅∗ 𝜕𝑙𝑛𝐶⁄ ൯ → 𝑎ଵ (𝑅ଵ𝐶௦)⁄ , 𝜙 → 𝐶௦𝑉ഥ௦, and 𝜙 𝐶⁄ →

𝑉ഥ, with the aid of Mathematica, eqn (S.188), (S.189), and 
(S.194) simplify to 

𝐶௦𝐺௦

𝑁𝑘𝑇
= −1 +

𝑉ത

𝑚ଵ𝑉ത௦

(1 + 2𝜙)ଶ

(1 − 𝜙)ସ
−

3𝑎ଵ

𝑚ଵ𝑅ଵ

(1 + 𝜙 + 𝜙ଶ)

(1 − 𝜙)ଷ
 

(𝑆. 195) 

In order to determine the remaining elements of the matrix [𝐆], 
defined by eqn (51) and (53), one must evaluate the osmotic 
pressure derivatives (𝜕𝛱 𝜕𝐶⁄ )்,ఓ

 and (𝜕𝛱 𝜕𝐶௦⁄ )்,ఓ
. 

Imposing the delta distribution 𝐶 = 𝐶௧௧𝛿∗  on eqn (124) 
provides the Percus-Yevick result for monodisperse hard 
spheres 

𝛱

𝑁𝑘𝑇
= 𝐶௧௧

(1 + 𝜙 + 𝜙ଶ)

(1 − 𝜙)ଷ
  . (𝑆. 196) 
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Differentiation of eqn (S.196) with respect to 𝐶  provides 

(𝜕𝛱 𝜕𝐶⁄ )்,ఓ

𝑁𝑘𝑇
=

𝐶௧௧

𝐶
ቊ

(1 − 𝜙ଷ)

(1 − 𝜙)ସ

𝜕𝑙𝑛𝐶௧௧

𝜕𝑙𝑛𝐶
+

(2 + 𝜙)ଶ

(1 − 𝜙)ସ
𝜙

𝜕𝑙𝑛𝜙

𝜕𝑙𝑛𝐶
ቋ  

(𝑆. 197) 

Using eqn (S.197), (S.155), and (S.184) with 𝐶௧௧ = 𝐶௦ 𝑚ഥ⁄  , we 
have 

(𝜕𝛱 𝜕𝐶⁄ )்,ఓ

𝑁𝑘𝑇
=

𝐶௦ 𝐶⁄

𝑚ഥ 𝜙(1 − 𝜙)ସ
ቊ(1 + 2𝜙)ଶ𝜙

− 3𝜙(1 − 𝜙ଷ)
𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
ቋ  .                           (𝑆. 198) 

The osmotic pressure derivative with respect to surfactant 
concentration 𝐶௦ is similarly derived, using eqn (S.153) and 
(S.157), 

(𝜕𝛱 𝜕𝐶௦⁄ )்,ఓ

𝑁𝑘𝑇
=

1

𝑚ഥ𝜙(1 − 𝜙)ସ
ቊ(1 + 2𝜙)ଶ(𝜙 − 𝜙)

+ 3𝜙(1 − 𝜙ଷ)
𝜕𝑙𝑛𝑅∗

𝜕𝑙𝑛𝐶
ቋ  .                           (𝑆. 199) 

In the tracer limit, as ൫𝜕𝑙𝑛𝑅∗ 𝜕𝑙𝑛𝐶⁄ ൯ → 0, 
1 𝐶⁄ ൫𝜕𝑙𝑛𝑅∗ 𝜕𝑙𝑛𝐶⁄ ൯ → 𝑎ଵ (𝑅ଵ𝐶௦)⁄ , 𝜙 → 0, 𝜙 𝐶⁄ → 𝑉ഥ, and 
𝜙 → 𝐶௦𝑉ഥ௦, eqn (S.198) and (S.199) reduce to 

(𝜕𝛱 𝜕𝐶⁄ )்,ఓ

𝑁𝑘𝑇
=

𝑉ത

𝑚ଵ𝑉ത௦

(1 + 2𝜙)ଶ

(1 − 𝜙)ସ
−

3𝑎ଵ

𝑚ଵ𝑅ଵ

(1 − 𝜙ଷ)

(1 − 𝜙)ସ
. (𝑆. 200) 

and 

(𝜕𝛱 𝜕𝐶௦⁄ )்,ఓ

𝑁𝑘𝑇
=

(1 + 2𝜙)ଶ

𝑚ଵ(1 − 𝜙)ସ
. (𝑆. 201) 

Finally, eqn (51), (53), (S.195), (S.200), and (S.201) yield [𝐆] in 
the tracer limit, with elements given by 

𝐶𝐺௦

𝑁𝑘𝑇
= 1  , (𝑆. 202) 

𝐶௦𝐺௦

𝑁𝑘𝑇
=

𝐶௦𝐺௦

𝑁𝑘𝑇
= −1 −

3𝑎ଵ

𝑚ଵ𝑅ଵ

(1 + 𝜙 + 𝜙ଶ)

(1 − 𝜙)ଷ

+
𝑉ത

𝑚ଵ𝑉ത௦

(1 + 2𝜙)ଶ

(1 − 𝜙)ସ
  ,                                 (𝑆. 203) 

and 

𝐶௦𝐺௦௦

𝑁𝑘𝑇
=

1

𝑚ଵ

(1 + 2𝜙)ଶ

(1 − 𝜙)ସ
 . (𝑆. 204) 

3.4 [𝐆], 𝑹𝟗𝟎, 𝑩𝑳𝑳, and [𝐋] for the label limit 

In this section, the micelle chemical potential derivative 
matrix [𝐆], the Rayleigh ratio 𝑹𝟗𝟎, and the mode amplitude 
ratio 𝑩𝑳𝑳  are derived for the label limit, where solute behaves 
as a volume-less label in a mixture of equally sized micelles with 
𝜙 = 0, 𝑚ഥ = 𝑚ଵ, and 𝑅∗ = 𝑅ଵ, where 𝑚ଵ and 𝑅ଵ are the 
solute-free micelle aggregation number and radius, 
respectively. Starting with our derivation for [𝐆], we begin with 
eqn (52) 
 

𝑚ଵ𝐺௦

𝑁𝑘𝑇
=

𝑚ଵ𝐺௦

𝑁𝑘𝑇
=

1

𝐶

𝜕𝑙𝑛𝐶ଵ

𝜕𝑙𝑛𝐶
+  𝐴ଵ ቆ

𝜕𝐶

𝜕𝐶
ቇ

ே

ୀଵ

  . (𝑆. 205) 

For the label limit, micelles are distinguished only by the 
number of solubilizate labels, which do not affect the 
interaction potentials between various micelle types. Hence, 
𝐴ଵ = 𝐴, and eqn (S.205) combines with 𝜕𝐶௧௧ 𝜕𝐶⁄ = 0 to 
provide, 

𝑚ଵ𝐺௦

𝑁𝑘𝑇
=

1

𝐶

𝜕𝑙𝑛𝐶ଵ

𝜕𝑙𝑛𝐶
  . (𝑆. 206) 

The osmotic pressure derivatives are determined using eqn 
(47)–(49), (45), 𝐴 = 𝐴, and 𝜕𝐶௧௧ 𝜕𝐶⁄ = 0, yielding 

൬
𝜕𝛱

𝜕𝐶
൰

்,ఓ

= 0  . (𝑆. 207) 

Using (S.207) with (S.163), we have 

𝑚ଵ(𝜕𝛱 𝜕𝐶௦⁄ )்,ఓ

𝑁𝑘𝑇
=

𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
  . (𝑆. 208) 

Eqn (51)–(53), (S.206)–(S.208), and 𝜙 = 0 combine to 
generate [𝐆] in the label limit, equal to 

𝐺 = −
𝑁𝑘𝑇

𝑛ത𝐶

𝜕𝑙𝑛𝐶ଵ

𝜕𝑙𝑛𝐶
  , (𝑆. 209) 

𝐺௦ = 𝐺௦ =
𝑁𝑘𝑇

𝑛ത𝐶௦

𝜕𝑙𝑛𝐶ଵ

𝜕𝑙𝑛𝐶
  , (𝑆. 210) 

and 

𝐺௦௦ =
𝑁𝑘𝑇

𝑚𝐶௦
ቊ

𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
−

𝜕𝑙𝑛𝐶ଵ

𝜕𝑙𝑛𝐶
ቋ  , (𝑆. 211) 

Derivations for 𝑅ଽ and 𝐵  for labelled micelles are similar 
that those in section 3.1. We begin by combining eqn (S.144) 
and (S.145) with (145), and (S.206)–(S.208) to yield the 
diagonalized elements of [𝐆] in the label limit 

𝐶𝐺

𝑁𝑘𝑇
= −

𝐶௦

𝐶

𝜕𝑙𝑛𝐶ଵ

𝜕𝑙𝑛𝐶

(𝑆. 212) 

and 

𝑚ଵ𝐶௦𝐺௦

𝑁𝑘𝑇
=

𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
  . (𝑆. 213) 

The diagonalized refractive index increments are evaluated 
using eqn (30)–(33), (145), and 𝑉ഥ = 0 to give 

𝑅 =
1

𝐶௦
൜

𝜕𝑛

𝜕(𝐶 𝐶௦⁄ )
ൠ

,்,థ

(𝑆. 214) 

and 

𝑅௦ =
𝜙

𝐶௦
൬

𝜕𝑛

𝜕𝜙
൰

,்,ೌ ೞ⁄

. (𝑆. 215) 
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Eqn (27), (39), (S.212)–(S.215), and 𝜙 = 𝑁 𝐶௦ 𝑚ଵ⁄ 𝑉ଵ combine 
to yield the Rayleigh ratio  

𝑅ଽ =
4𝜋ଶ𝑛ଶ

𝜆
ସ ൬

𝜕𝑛

𝜕𝜙
൰

,்,ೌ ೞ⁄

ଶ

𝑉ଵ𝜙 ቊ
𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
ቋ

ିଵ

(1 + 𝐵)  , (𝑆. 216) 

Where 𝑉ଵ is the volume of a solute-free micelle and the mode 
amplitude ratio is given by 

𝐵 = ቊ
[𝜕𝑛 𝜕(𝐶 𝐶௦⁄ )⁄ ],்,థ

𝜙(𝜕𝑛 𝜕𝜙⁄ ),்,ೌ ೞ⁄
ቋ

ଶ
(𝐶 𝐶௦⁄ )ଶ

(− 𝜕𝑙𝑛𝐶ଵ 𝜕𝑙𝑛𝐶⁄ )

𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
.  

(𝑆. 217) 

In order to derive the Onsager coefficient matrix [𝐋], we start 
by evaluating the determinant of [𝐆] using eqn (S.161), (S.207), 
(S.208), (S.210), and  𝑛ഥ𝐶௦ = 𝑚ଵ𝐶 

|𝑮| = ൬
𝑁𝑘𝑇

𝑛ത𝐶௦
൰

ଶ

൬−
𝜕𝑙𝑛𝐶ଵ

𝜕𝑙𝑛𝐶
൰

𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
  . (𝑆. 218) 

Eqn (95) and (133)–(141), and (S.218) combine to provide 

𝐿 = 𝑛തଶ𝐶௧௧ ቆ
𝐷

𝑁𝑘𝑇
ቇ 𝐾(𝜙) +

1 + 𝑓𝜙

(− 𝜕𝑙𝑛𝐶ଵ 𝜕𝑙𝑛𝐶⁄ )
൨  , (𝑆. 219) 

Similar arguments yield the remaining Onsager coefficients: 

𝐿௦ = 𝐿௦ = 𝑛ത𝑚ଵ𝐶௧௧ ቆ
𝐷

𝑁𝑘𝑇
ቇ 𝐾(𝜙) (𝑆. 220) 

and 

𝐿௦௦ = 𝑚ଵ
ଶ𝐶௧௧ ቆ

𝐷

𝑁𝑘𝑇
ቇ 𝐾(𝜙) . (𝑆. 221) 

3.5 𝑹𝟗𝟎 for binary mixtures of monodisperse micelles with 
crowding-induced dehydration 

In this section, we derive the Rayleigh ratio for a binary 
mixture of hydrated surfactant (s) and water (w) with a 
concentration dependent hydration index 𝑛ு = 𝑛ு(𝑇, 𝑝, 𝐶௦) 
and a constant aggregation number 𝑚ଵ. For this system, the 
total entropy fluctuation at constant temperature 𝑇 and 
scattering volume 𝑉 is given by 

𝛿𝑆் = −
1

2𝑇
(𝛿𝜇௪𝛿𝑁௪ + 𝛿𝜇௦𝛿𝑁௦)   , (𝑆. 222) 

where 𝜇௪  and 𝜇௦  are the chemical potentials for water and 
hydrated surfactant and 𝑁௪ and 𝑁௦  are the respective numbers 
of moles in the scattering volume 𝑉. Imposing constant volume, 
we have  

𝛿𝑉 = 𝛿[𝑉ത௪𝑁௪ + (𝑉ത௦ + 𝑛ு𝑉ത௪)𝑁௦] = 0  . (𝑆. 223) 

Solving eqn (S.223) for the fluctuation in the number of moles 
of water provides 

𝛿𝑁௪ = −𝑁௦𝛿𝑛ு −
(𝑉ത௦ + 𝑛ு𝑉ത௪)

𝑉ത௪

𝛿𝑁௦  . (𝑆. 224) 

At constant temperature, pressure, and volume, the total 
fluctuation differential in the hydration index is given by 

𝛿𝑛ு =
𝑉

𝑉
൬

𝜕𝑛ு

𝜕𝑁௦
൰

,்

𝛿𝑁௦ = ൬
𝜕𝑛ு

𝜕𝐶௦
൰

,்

𝛿𝐶௦  , (𝑆. 225) 

and eqn (S.224) and (S.225) combine to yield 

𝛿𝑁௪ = −𝑉 ቊ𝐶௦ ൬
𝜕𝑛ு

𝜕𝐶௦
൰

,்

+
(𝑉ത௦ + 𝑛ு𝑉ത௪)

𝑉ത௪

ቋ 𝛿𝐶௦  , (𝑆. 226) 

which indicates that hydrated surfactant displaces free water at 
constant volume and adds to 𝑁௪  via the transfer of bound water 
from hydrated surfactant to bulk water via dehydration. 

Now, using the Gibbs-Duhem relation at constant 
temperature, pressure, and volume, and solving for the free 
water fluctuation 𝛿𝜇௪  provides 

𝛿𝜇௪ = −
𝑉

𝑉

𝑁௦

𝑁௪
𝛿𝜇௦ = −

𝐶௦

𝐶௪
𝛿𝜇௦  . (𝑆. 227) 

The total fluctuation differential in hydrated surfactant 
chemical potential at constant temperature, pressure, and 
volume is given by 

𝛿𝜇௦ =
𝑉

𝑉
൬

𝜕𝜇௦

𝜕𝑁௦
൰

,்

𝛿𝑁௦ = ൬
𝜕𝜇௦

𝜕𝐶௦
൰

,்

𝛿𝐶௦  , (𝑆. 228) 

and eqn (S.227) and (S.228) combine 

𝛿𝜇௪ = −
𝐶௦

𝐶௪
൬

𝜕𝜇௦

𝜕𝐶௦
൰

,்

𝛿𝐶௦ . (𝑆. 229) 

Now, eqn (S.222), (S.226), and (S.229) combine with 𝜙 =

𝐶௦(𝑉ഥ௦ + 𝑛ு𝑉ഥ௪) and 1 − 𝜙 = 𝐶௪𝑉ഥ௪  to provide 

𝛿𝑆் = −
𝑉

2𝑇
൬

1

1 − 𝜙
൰ ൬

𝜕𝜇௦

𝜕𝐶௦
൰

,்

ቈ1 + 𝐶௦
ଶ𝑉ത௪ ൬

𝜕𝑛ு

𝜕𝐶௦
൰

,்

 𝛿𝐶௦
ଶ  .  

(𝑆. 230) 

Eqn (S.90) reduces for a binary mixture to provide 

൬
1

1 − 𝜙
൰ ൬

𝜕𝜇௦

𝜕𝐶௦
൰

,்

= ൬
𝜕𝜇௦

𝜕𝐶௦
൰

்,ఓೢ

 , (𝑆. 231) 

 and eqn (S.230) and (S.231) yield 

𝛿𝑆் = −
𝑉

2𝑇
൬

𝜕𝜇௦

𝜕𝐶௦
൰

்,ఓೢ

ቈ1 + 𝐶௦
ଶ𝑉ത௪ ൬

𝜕𝑛ு

𝜕𝐶௦
൰

,்

 𝛿𝐶௦
ଶ  . (𝑆. 232) 

The master formula for fluctuation theory provides the 
probability for a fluctuation 𝛿C௦  in the scattering volume 𝑉 

𝑃(𝛿𝐶௦) = 𝛺ିଵ𝑒
ቊି


ଶಳ்

൬
డఓೞ
డೞ

൰
,ഋೢ

ቈଵାೞ
మഥೢ ൬

డಹ
డೞ

൰
,

ఋೞ
మ

ቋ
  , (𝑆. 233)

 

and is integrated over all possible fluctuations to determine the 
normalization constant 



   

  15 

𝛺 = 〈𝛿𝐶ୗ〉 = න 𝑑

ஶ

ିஶ

(𝛿𝐶ୗ)𝑒
ቊି


ଶಳ்

൬
డఓೞ
డೞ

൰
,ഋೢ

ቈଵାೞ
మഥೢ ൬

డಹ
డೞ

൰
,

ఋೞ
మ

ቋ

=

⎩
⎪
⎨

⎪
⎧

2𝜋𝑘𝑇

𝑉 ൬
𝜕𝜇௦

𝜕𝐶௦
൰

்,ఓೢ

ቈ1 + 𝐶௦
ଶ𝑉ത௪ ൬

𝜕𝑛ு

𝜕𝐶௦
൰

,்

⎭
⎪
⎬

⎪
⎫

ଵ
ଶ

  ,                              (𝑆. 234) 

Using eqn (S.233) and (S.234), the mean-square fluctuation in 
the surfactant concentration is given by 

〈𝛿𝐶௦
ଶ〉 = න 𝑑

ஶ

ିஶ

(𝛿𝐶௦)𝛿𝐶௦
ଶ𝑃(𝛿𝐶௦)

= 𝛺ିଵ න 𝑑

ஶ

ିஶ

(𝛿𝐶௦)𝛿𝐶௦
ଶ𝑒

ቊି


ଶಳ்
൬

డఓೞ
డೞ

൰
,ഋೢ

ቈଵାೞ
మഥೢ ൬

డಹ
డೞ

൰
,

ఋೞ
మ

ቋ

=  
𝑘𝑇

𝑉 ൬
𝜕𝜇௦

𝜕𝐶௦
൰

்,ఓೢ

ቈ1 + 𝐶௦
ଶ𝑉ത௪ ൬

𝜕𝑛ு

𝜕𝐶௦
൰

,்


  ,                                     (𝑆. 235) 

In order determine the Rayleigh ratio, we will need the 
fluctuation in the dielectric constant 𝜀 =

𝜀[𝑇, 𝑝, 𝐶௦, 𝑛ு(𝑇, 𝑝, 𝐶௦)], which is expanded in reciprocal space at 
constant temperature and pressure to provide 

𝛿𝜀(𝒒, 𝑡) = ൬
𝜕𝜀

𝜕𝑛ு
൰

,்,ೞ

𝛿𝑛ு(𝒒, 𝑡) + ൬
𝜕𝜀

𝜕𝐶௦
൰

,்,ಹ

𝛿𝐶௦(𝒒, 𝑡)  , (𝑆. 236) 

In eqn (S.236), 𝛿𝐶௦(𝒒, 0) is the Fourier transform of the local 
surfactant concentration fluctuation 𝛿𝐶௦(𝒓, 0), given by 

𝛿𝐶௦(𝒒, 0) =
1

𝑉
න 𝑑𝒓



𝑒𝒒⋅𝒓𝛿𝐶መ௦(𝒓, 0)  . (𝑆. 237) 

Eqn (S.225) and (S.236) combine to yield 

𝛿𝜀(𝒒, 𝑡) = ൬
𝜕𝜀

𝜕𝐶௦
൰

,்,ಹ

+ ൬
𝜕𝜀

𝜕𝑛ு
൰

,்,ೞ

൬
𝜕𝑛ு

𝜕𝐶௦
൰

,்

 𝛿𝐶௦(𝒒, 𝑡)  , (𝑆. 238) 

Using eqn (S.238), the ensemble averaged time correlation 
function for fluctuations in 𝜀 is given by 

〈𝛿𝜀∗(𝒒, 0)𝛿𝜀(𝒒, 𝑡)〉 = ൬
𝜕𝜀

𝜕𝐶௦
൰

,்,ಹ

+ ൬
𝜕𝜀

𝜕𝑛ு
൰

,்,ೞ

൬
𝜕𝑛ு

𝜕𝐶௦
൰

,்



ଶ

× 〈𝛿𝐶௦
∗(𝒒, 0)𝛿𝐶௦(𝒒, 𝑡)〉  .  

(𝑆. 239) 

Now, setting 𝑡 = 0 and using eqn (𝑆. 237) in the limit 𝑞𝑅∗ → 0, the 
mean square fluctuation in surfactant concentration is given by 

〈𝛿𝐶௦
∗(𝒒, 0)𝛿𝐶௦(𝒒, 0)〉 = 〈ቈ

1

𝑉
න 𝑑𝒓



𝛿𝐶௦(𝒓, 0)

ଶ

〉 = 〈𝛿𝐶௦
ଶ〉  . (𝑆. 240) 

Eqn (S.235), (S.239) and (S.240) combine with 𝑡 = 0 to provide 

〈𝛿𝜀∗(𝒒, 0)𝛿𝜀(𝒒, 0)〉 =

𝑘𝑇 ൬
𝜕𝜀

𝜕𝐶௦
൰

,்,ಹ

+ ቀ
𝜕𝜀

𝜕𝑛ு
ቁ

,்,ೞ

൬
𝜕𝑛ு

𝜕𝐶௦
൰

,்
൩

ଶ

𝑉 ൬
𝜕𝜇௦

𝜕𝐶௦
൰

்,ఓೢ

ቈ1 + 𝐶௦
ଶ𝑉ത௪ ൬

𝜕𝑛ு

𝜕𝐶௦
൰

,்


  . 

(𝑆. 241) 

The Rayleigh ratio 𝑅ଽ at constant temperature and pressure is 
determined by combining eqn (37) and (S.241) and 𝜀ଶ = 𝑛ସ, and 
𝑘 ≈ 2𝜋𝑛 𝜆⁄  to provide 

𝑅ଽ =
𝐼(𝒒)𝑅ଶ

𝐼𝑉
=

4𝜋ଶ𝑛ଶ

𝜆
ସ

ቈ൬
𝜕𝑛
𝜕𝐶௦

൰
,்,ಹ

+ ቀ
𝜕𝑛

𝜕𝑛ு
ቁ

,்,ೞ

൬
𝜕𝑛ு

𝜕𝐶௦
൰

,்


ଶ

ቈ1 + 𝐶௦
ଶ𝑉ത௪ ൬

𝜕𝑛ு

𝜕𝐶௦
൰

,்


×
𝑘𝑇

𝑉 ൬
𝜕𝜇௦

𝜕𝐶௦
൰

்,ఓೢ

    .  

(𝑆. 242) 

The surfactant chemical potential derivative (𝜕𝜇௦ 𝜕𝐶௦⁄ )்,ఓೢ
 is 

determined using (S.73), reduced for a binary mixture  

൬
𝜕𝜇௦

𝜕𝐶௦
൰

்,ఓೢ

=
1

𝐶௦
൬

𝜕𝛱

𝜕𝐶௦
൰

்,ఓೢ

  , (𝑆. 243) 

and a general form for the osmotic pressure in a mixture of 
monodisperse micelles 

𝛱

𝑁𝑘𝑇
= 𝐶௧௧𝑍(𝜙)  . (𝑆. 244) 

where 𝑍(𝜙) is the compressibility factor. Eqn (S.242)–(S.244) 
and 𝐶௧௧ = 𝐶௦ 𝑚ଵ⁄  combine to yield 

𝑅ଽ =
4𝜋ଶ𝑛ଶ

𝜆
ସ

൬
𝜕𝑛
𝜕𝐶௦

൰
்,

ଶ

ቈ1 + 𝐶௦
ଶ𝑉ത௪ ൬

𝜕𝑛ு

𝜕𝐶௦
൰

,்


𝐶௦𝑚ଵ

𝑁
ቊ

𝑑[𝐶௦𝑍(𝜙)]

𝑑𝐶௦
ቋ

ିଵ

, (𝑆. 245) 

where, according to the chain rule, 

൬
𝜕𝑛

𝜕𝐶௦
൰

்,

= ൬
𝜕𝑛

𝜕𝐶௦
൰

,்,ಹ

+ ൬
𝜕𝑛

𝜕𝑛ு
൰

,்,ೞ

൬
𝜕𝑛ு

𝜕𝐶௦
൰

,்

  . (𝑆. 246) 

Furthermore, using eqn (94), we have 

𝑑[𝐶௦𝑍(𝜙)]

𝑑𝐶௦
=

(1 + 2𝜙)ଶ − 𝜙ଷ(4 − 𝜙)

(1 − 𝜙)ସ

− 𝐶௦
ଶ𝑉ത௪ ൬

𝜕𝑛ு

𝜕𝐶௦
൰

,்

(4 + 4𝜙 − 2𝜙ଶ)

(1 − 𝜙)ସ
       (𝑆. 247) 

A check for the results given by eqn (S.245)–(S.247) is provided 
by removing dehydration, so that (𝜕𝑛ு 𝜕𝐶௦⁄ ),் = 0 and the 
hydrated surfactant molar volume 𝑉ഥ௦ = 𝑉ഥ௦ + 𝑛ு𝑉ഥ௪ is constant. 
As a result, using 𝜙 = 𝐶௦𝑉ഥ௦  and 𝑚ଵ𝑉ഥ௦ 𝑁⁄ = 𝑉ଵ, eqn (S.245) 
reduces to 
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𝑅ଽ =
4𝜋ଶ𝑛ଶ

𝜆
ସ ൬

𝜕𝑛

𝜕𝜙
൰

்,

ଶ

𝑉ଵ𝜙 ቊ
𝑑[𝜙𝑍(𝜙)]

𝑑𝜙
ቋ

ିଵ

, (𝑆. 248) 

which is consistent with 𝑅ଽ or a binary mixture of 
monodisperse hard spheres. 
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