
Supplementary Information for: Wetting dynamics under periodic switching on

different scales: Characterization and mechanisms

Leon Topp,1 Moritz Stieneker,2, 3, a) Svetlana Gurevich,2, 3, b) and Andreas Heuer1, 3, 4, c)

1)University of Münster, Institute for Physical Chemistry, Corrensstr. 28/30,

48149 Münster, Germany
2)University of Münster, Institute for Theoretical Physics, Wilhelm-Klemm-Str. 9,

48149 Münster, Germany
3)University of Münster, Center of Nonlinear Science (CeNoS), Corrensstr. 2,

48149 Münster, Germany
4)University of Münster, Center for Multiscale Theory and Computation (CMTC),

Corrensstr. 40, 48149 Münster, Germany

(Dated: 19 August 2022)

a)L. Topp and M. Stieneker contributed equally to this work.
b)Electronic mail: gurevics@uni-muenster.de
c)Electronic mail: andheuer@uni-muenster.de

1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2022



I. SNAPSHOTS

FIG. 1: Snapshots from the MD simulation of a droplet for switching between εw = 0.632 and

εw = 0.762 with a switching frequency of 20 ·104 MD steps at MD steps of a) 0 and b) 10 ·104.
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FIG. 2: Snapshots from the TF simulation of a droplet for switching between εw = 0.632 and

εw = 0.762 with a switching frequency corresponding to 20 ·104 MD steps at corresponding MD

steps of a) 0 and b) 10 ·104.

II. CALCULATION OF THE CONTACT ANGLE FROM RFWHM

For a spherical cap shaped droplet one has

r2 =
(

σ

2

)2
+

(
r− h

2

)2

(1)

where h is the height, r the radius of the droplet, and σ the width at half height. Therefore, the

radius r can be expressed as

r =
1

4h
(σ2 +h2). (2)

Further, basic trigonometry yields

cos(θ) = 1− h
r

(3)

with the contact angle θ . By plugging Eq. (2) into Eq. (3) we get

cos(θ) = 1− h
1

4h (σ
2 +h2)

(4)
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and finally we obtain

cos(θ) = 1− 4
1

rFWHM2 +1
. (5)

with the definition of the relative full width at half maximum rFWHM= h/σ .

III. REFORMULATION OF MKT EQUATION

The relation between the half chord length r and the half of the central angle θ of a circular

segment is given by

r =
√

2A
sin(θ)√

(2θ − sin(2θ))
=
√

2A f (θ) (6)

where A is the area of the circular segment. Here, we r is the radius of a droplet on a surface and

θ is the contact angle. Then we can write

vcl =
dr
dt

=
√

2A
d f
dθ

dθ

dt
=−
√

2A
d f
dθ

1
sin(θ)

d cos(θ)
dt

(7)

where

g(θ) =
d f
dt

=
cos(θ)√

2θ − sin(2θ)
− sin(θ)(1− cos(2θ))√

2θ − sin(2θ)
3 . (8)

The MKT relation reads

v = k0(cos
(
θeq
)
− cos(θ)) (9)

with k0 =
γ

ζ
and can thus be rewritten as

d
dt

cos(θ) =−k1
sin(θ)
g(θ)

(cos
(
θeq
)
− cos(θ)) (10)

with k1 = k0√
2A

. As can be seen in Fig. 3 −sin(θ)
g(θ) can be approximated as 3(1− cos(θ)). Thus,

Eq. (10) can be rewritten for intermediate changes in contact angles as

d
dt

cos(θ) = k2(1− cos(θ))(cos
(
θeq
)
− cos(θ)) (11)

and for small changes as
d
dt

cos(θ) = k3(cos
(
θeq
)
− cos(θ)) (12)

where k3 = k2(1− cos
(
θeq
)
) since cos(θ) can be substituted by the constant cos

(
θeq
)
. In Fig. 4

and 5 the two approximations and the solution from Eq. (10) are plotted for a single switching

event and periodic switching.
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FIG. 3: −sin(θ)
g(θ) in comparison with 3(1− cos(θ)) plotted versus cos(θ).

(a) (b)

FIG. 4: Evolution of cos(θ) for the different approximations of the MKT for (a) a single switch

and (b) periodic switching between εw = 0.632 and εw = 0.671. (full: Eq. (10), intermediate:

Eq. (11); small: Eq. (12))
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(a) (b)

FIG. 5: Evolution of cos(θ) for the different approximations of the MKT for (a) a single switch

and (b) periodic switching between εw = 0.632 and εw = 0.762. (full: Eq. (10), intermediate:

Eq. (11), small: Eq. (12))

From Eq. (11) after separation of variables one can write

dx
(1− x)(x− xeq)

=−k2dt (13)

Here and in the following, we will write x and xeq for cos(θ) and cos
(
θeq
)
, respectively, for reasons

of better readability. Note that

1
(1− x)(x− xeq)

=
1

1− xeq

[
1

1− x
+

1
x− xeq

]
(14)

Therefore, one obtains for the solution of the differential equation

− ln(1− x)+ ln
(
x− xeq

)
=−k2(1− xeq)t +C (15)

with the integration constant C = − ln(1− x0)+ ln
(
x0− xeq

)
. Furthermore, we use the abbrevia-

tion k3 = k2(1− xeq). Then we can rewrite

x− xeq

1− x
=

x0− xeq

1− x0
exp(−k3t) (16)

Finally, one needs to solve this equation for x(t). After a short calculation one obtains

x(t) =
xeq + ε(t)
1+ ε(t)

(17)
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with

ε(t) =
x0− xeq

1− x0
exp(−k3t) (18)

For the normalized relaxation function y(t) = (x(t)− xeq)/(x0− xeq) this yields

y(t) =
(1− xeq)exp(−k3t)

1− x0 + exp(−k3t)(x0− xeq)
. (19)

For small but finite differences of x0− xeq (indicated by a small parameter ∆εw) in order to learn

more about the impact of increasing differences between the initial and the final state. For this

purpose we take into account terms until ε2. This yields

x(t) = [xeq + ε(t)[1− ε(t)+ ε(t)2 + ...]

≈ xeq +(1− xeq)(ε(t)− ε(t)2)+ ...
(20)

Then we may write

y(t)≈
1− xeq

1− x0

[
exp(−k3t)−

x0− xeq

1− x0
exp(−2k3t)

]
. (21)

IV. ANALYTICAL CALCULATION OF WETTING PROPERTIES UPON

PERIODICALLY SWITCHING

We start from the equation
d
dt

y(t) =−k3,i(y−ai) (22)

with a contact angle independent k3,i where i denotes the prefactor k3 for an increasing (↑) or

decreasing (↓) wettability. Its general solution reads

y(t) = ai(1− exp(−k3,it))+ y(0)exp(−k3,it) (23)

As before, y is a normalized version of the cosine of the contact angle. Here, we first consider that

before the first switching event the system is in the state of higher wettability. Then, in the first part

of the switching experiment (t ∈ [0,T/2)) we have a↓ = 0, in the second half a↑ = 1 (t ∈ [T/2,T )).

The period is denoted as T . Thus, for the first half switching period one obtains

y(t) = y(0)exp
(
−k3,↓t

)
(24)

and for the second half

y(t) = (1− exp
(
−k3,↑t

)
)+ y(0)exp

(
−k3,↓T/2

)
exp
(
−k3,↑T/2

)
(25)
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The average over the first time interval is thus given by

〈y1〉= y(0)
1

k3,↓T/2
(
1− exp

(
−k3,↓T/2

))
(26)

and that over the second time interval

〈y2〉=1−
1− exp

(
−k3,↑T/2

)
k3,↑T/2

+ y(0)exp
(
−k3,↓T/2

) 1
k3,↑T/2

(1− exp
(
−k3,↑T/2

)
)

=1−
(1− exp

(
−k3,↑T/2

)
)

k3,↑T/2
(1− y(0)exp

(
−k3,↓T/2

)
)

(27)

The average over both time intervals finally reads

〈y(0)〉=1
2
−

1− exp
(
−k3,↑T/2

)
2k3,↑T/2

+ y(0)

[
1

2k3,↓T/2
(1− exp

(
−k3,↓T/2

)
)

+ exp
(
−k3,↓T/2

) 1
2k3,↑T/2

(1− exp
(
−k3,↑T/2

)
)

] (28)

Naturally, Eq. (28) also holds to express the average 〈y(n)〉 during the time t = 2nT/2 and t =

2(n+ 1)T/2 in dependence of y(t = n · T ). Thus, we first need to find an explicit expression

for y(n). With the general solution given above, one can directly write (using the abbreviation

K3 = k3,↓+ k3,↑)

y(t = T ) = (1− exp
(
−k3,↑T/2

)
)+ y(0)exp(−KT/2)≡C+Dy(0) (29)

In general one has

y(t = n ·T )) =C+Dy(t = (n−1) ·T ) (30)

This recursive relation has a straightforward solution which reads (setting y(0) = 1)

y(t = n ·T ) =C(1+D+D2 + ...+Dn−1)+Dn =C
1−Dn

1−D
+Dn

=
1− exp

(
−k3,↑T/2

)
1− exp(−K3T/2)

(1− exp(−K3nT/2))+ exp(−K3nT/2)
(31)

Thus, we finally have

〈y(n)〉=1
2
−

1− exp
(
−k3,↑T/2

)
2k3,↑T/2

+

[
1− exp

(
−k3,↑T/2

)
1− exp(−K3T/2)

(1− exp(−K3nT/2))+ exp(−K3nT/2)

]

·
[

1
2k3,↓T/2

(1− exp
(
−k3,↓T/2

)
)+ exp

(
−k3,↓T/2

) 1
2k3,↑T/2

(1− exp
(
−k3,↑T/2

)
)

]
(32)
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In the long-time limit one finds the plateau value

lim
n→∞

y(t = n ·T ) = 1
2

{
1+

1− exp
(
−k3,↑T/2

)
1− exp(−K3T/2)

1
k3,↓T/2

(1− exp
(
−k3,↓T/2

)
)

−
1− exp

(
−k3,↑T/2

)
k3,↑T/2

(
1−

1− exp
(
−k3,↑T/2

)
1− exp(−K3T/2)

exp
(
−k3,↓T/2

))}

=
1
2

{
1+

1− exp
(
−k3,↑T/2

)
1− exp(−K3T/2)

1
k3,↓T/2

(1− exp
(
−k3,↓T/2

)
)

−
1− exp

(
−k3,↑T/2

)
k3,↑T/2

1− exp
(
−k3,↓T/2

)
1− exp(−K3T/2)

}

=
1
2

{
1+

(1− exp
(
−k3,↑T/2

)
)(1− exp

(
−k3,↓T/2

)
1− exp(−K3T/2)

(
1

k3,↓T/2

− 1
k3,↑T/2

)}
≡ yplateau

(33)

For very fast switching this boils down to

yplateau =
k3,↑
K3
−

k3,↑− k3,↓
24K3

k3,↓k3,↑(T/2)2 (34)

The general equation for y(n) can be rewritten with yplateau

〈y(n)〉= yplateau + exp(−K3nT/2)

(
1−

1− exp
(
−k3,↑T/2

)
1− exp(−K3T/2)

)

·
[

1
2k3,↓T/2

(1− exp
(
−k3,↓T/2

)
)+ exp

(
−k3,↓T/2

) 1
2k3,↑T/2

(1− exp
(
−k3,↑T/2

)
)

]
≡ yplateau + exp

(
−K(n+

1
2
)T/2

)
· ŷ+

(35)

with

ŷ+ = yexp
(

K3T
4

)
exp
(
−k3,↑T/2

)
− exp(−K3T/2)

1− exp(−K3T/2)

·
[

1
k3,↓T

(1− exp
(
−k3,↓T/2

)
)+ exp

(
−k3,↓T/2

) 1
k3,↑T

(1− exp
(
−k3,↑T/2

)
)

] (36)

When starting from the state with lower wettability one ends up with

〈y(n)〉= yplateau− exp
(
−K(n+

1
2
)T/2

)
· ŷ− (37)

ŷ− is identical to ŷ+ after exchange of k3,↓ with k3,↑.
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For k3,↓ = k3,↑ = k3 these expressions simplify to

y(n) =
1
2
+ exp(−k3(2n+1)T/2)

1− exp(−k3T/2)
1− exp(−2k3T/2)

1
2k3T/2

+(1− exp(−k3T/2))(1+ exp(−k3T/2))

=
1
2
+ exp(−k3(2n+1)T/2)

1
2k3T/2

(1− exp(−k3T/2))

(38)

V. ζ

Table Tab. I shows values of ζR extracted from the MD model with two different methods. ζ

can be obtained via K0, which is the inverse time needed for half the particles to move from the

first to the second layer, and n, the density of the first liquid layer1. ζMD denotes the ζ value

extracted from an analysis of the contact line velocity in dependence of the cosine of the contact

angle.

TABLE I: Values of K0, n, and ζR directly calculated from MD simulations as well as values of

ζMD extracted from the analysis of the contact line velocity dependence on the cosine of the

contact angle.

ε K0/τ−1 n/σ−3 ζR

0.447 4.62 ·10−4 0.57 0.93 ·103

0.548 3.81 ·10−4 0.62 1.23 ·103

0.632 3.24 ·10−4 0.66 1.53 ·103

0.707 2.76 ·10−4 0.69 1.88 ·103

0.742 2.55 ·10−4 0.70 2.07 ·103

0.762 2.44 ·10−4 0.71 2.19 ·103

0.809 2.40 ·10−4 0.71 2.23 ·103

0.775 2.17 ·10−4 0.73 2.51 ·103

0.837 2.03 ·10−4 0.74 2.73 ·103

In the TF model the contact angle velocity can be analyzed analogously. The resulting values

can be found in Tab. II.
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TABLE II: Values of ζT F within the TF model extracted from the analysis of the contact line

velocity dependence on the cosine of the contact angle

Initial ε Final ε ζT F

0.762 0.632 1.60

0.671 0.632 1.39

0.632 0.671 1.52

0.632 0.762 2.72

VI. STRETCHING/COMPRESSION OF THE RELAXATION

We have fitted a stretched exponential for the relaxation function after a single switching pro-

cess which can be seen in Fig. 6 for TF and in Fig. 7 for MD data. The resulting β -values for the

MD simulations, for the TF analysis, and for the MKT equations (Eq. 10) are listed in Tab. III.

TABLE III: Values of β obtained from an non-exponential fit to the data for a single switching

event from ε1 to ε2 in MD, MKT and TF simulations.

ε1 ε2 βMD βMKT βT F

0.632 0.762 0.87 0.73 0.68

0.762 0.632 1.68 1.42 2.05

One consistently observes a stretched exponential behavior when increasing the wettability

upon switching and a compressed exponential behavior in the opposite case.

For the interpretation of possible non-exponential effects in relaxation functions y(t) we start

by defining the n-th moment of y(t) as

〈τn〉=
∫

∞

0 tn · y(t)dt∫
∞

0 y(t)
. (39)

Now, we can compute the quantity
〈τ2〉

2〈τ〉2
, (40)

which is equal to one for a purely exponential function y(t). If this quantity is greater than 1, it

implies a compressed exponential function, i. e. β > 1 whereas in the opposite case it describes a

stretched exponential function, i. e. β < 1.
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For the y(t), given in Eq. (21), we get

〈τ2〉
2〈τ〉2

=

(
1− B

8

)(
1− B

2

)(
1− B

4

)2 = 1− B
8(1− B

4 )
2
, (41)

where B =
x0−xeq
1−x0

. For switching from higher to lower wettability x0 > xeq holds, which implies

B > 0. Consequently, the expression in Eq. (41) has to be smaller than 1 and finally β has to be

greater 1. Analogously β < 1 follows for the inverse switching direction. This is in accordance

with our results from the different models, as shown in Tab. III.

(a) (b)

(c) (d)

FIG. 6: Relaxation of cos(θ) after an instantaneous change in wettability in the TF model for the

wettability values corresponding to different changes in interaction strengths ε1→ ε2 in the MD

model: a) 0.632→ 0.671, b) 0.671→ 0.632, c) 0.632→ 0.0.762 and d) 0.762→ 0.632.
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(a) (b)

(c) (d)

FIG. 7: Relaxation of cosθ after an instantaneous change in wettability in the MD and MKT

model for the interaction strengths ε1↔ ε2: (a) 0.632↔ 0.671 (MKT), (b) 0.632↔ 0.671 (MD),

(c) 0.632↔ 0.762 (MKT) and (d) 0.632↔ 0.762 (MD).
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VII. MINIMUM yplateau VALUE

FIG. 8: (a) cos(θ)plateau obtained from MD, MKT, MKT with a dead time effect (MKT_dt), TF and

from the analytical solution given in Eq. (33) plotted against T for switching between εLW = 0.632

and εHW = 0.762.

For calculating the MKT values with short time effects in Fig. 8 we included a dead time

where we set γ/ζ = 0 after each switching event for 1500 time steps when switching to a higher

wettability and 3
4 · 1500 time steps when switching to a lower wettability. The factor of 3

4 results

from the relation of the time steps that show the nonlinear behavior in Fig. 9.
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(a) (b)

(c) (d)

FIG. 9: Figure taken from main manuscript: Velocity of the contact line vcl plotted against

cosθ(t) for (a) the relaxation of a droplet on a surface with a wettability change from

εHW = 0.762 to εLW = 0.632 and the reverse process. A line is fitted to the data to compute ζMD

from its slope according to the MKT theory. The first few data points (plus sign) were discarded

for these fits. Data points are spaced equidistantly with ∆t = 104 MD steps, (b) TF simulations

corresponding to the MD results in (a) with ∆t = 0.1. (c) vcl plotted against cosθ(t) for a droplet

on a surface with a periodically switched wettability from εHW = 0.762 to εLW = 0.632 with the

initial droplet equilibrated on a surface with a wettability of εLW . The switching period was

T = 2 ·106 MD steps. The data points are again spaced equidistantly with ∆t = 104 MD steps.

The dashed lines are plots of Eq. (9) with values of ζR for wettabilities of εHW and εLW ,

respectively. (d) The TF equivalent of (c) with T = 15.8 and ∆t = 0.1. Note that there is no noise

in the TF model.

15


