Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2022

Flow-driven synthesis of calcium phosphate–calcium alginate hybrid chemical gardens Electronic Supplementary Material

Réka Zahorán^a, Pawan Kumar^a, Ádám Juhász^b, Dezső Horváth^c, and Ágota Tóth^{a,*}

^aDepartment of Physical Chemistry and Materials Science,

University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary

^b MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group,

Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science,

University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary and

^cDepartment of Applied and Environmental Chemistry,

University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary

EXPERIMENTAL

Density and dynamic viscosity:

The density of reactants was measured using a density meter (Anton Paar DMA-500) and the viscosity of 500 mL of solution with a rotational viscometer (Anton Paar ViscoQC-300).

Table S1. (A) Concentrations and densities of CaCl₂ solution and (B) concentrations of Na₃PO₄ and solution densities of homogeneous solution of PO_4^{3-} in 0.3 w/V% sodium alginate.

(A)	$[CaCl_2]/M$	0.07	0.34	0.68	1.36	2.04		
	$\rho_{\rm Ca^{2+}} \; / \; \rm g \; \rm cm^{-3}$	1.0032	1.0267	1.0551	1.1048	1.1527		
(B)	$[\mathrm{Na_3PO_4}]/~\mathrm{mM}$	0	2.63	13.1	26.3	65.8	131.5	263
	$\rho_{\rm O_I} \; / \; \rm g \; cm^{-3}$	0.9982	0.9989	1.0009	1.0037	1.0110	1.0239	1.0467
	$\eta_{\rm O_{I}} \; / \; \rm mPa s$	25.0	_	_	_	_	_	8.0

Raman spectroscopy:

Raman-spectroscopy measurements were carried out using a SENTERRA II Compact Raman microscope ($\lambda_{exc} = 785$ nm, P = 25 mW).

Figure S1. Raman-spectra of dried samples with composition of $[\rm Na_3PO_4]=26.3~\rm mM$ (red) and 0.263 M (black) in 0.3 w/V% alginate. In all cases $[\rm CaCl_2]=2.04~\rm M.$

Figure S2. Percentage distribution of (a) Ca²⁺ and (b) PO₄³⁻ containing species using $c_{T,Ca} = 2.0$ M and $c_{T,PO_4} = 26.3$ mM concentrations.

SUPPORTING TABLES

	$Q = 2.48 \text{ mL min}^{-1}$	$Q = 3.35 \text{ mLmin}^{-1}$
$[CaCl_2] / M$	$d \ / \ \mathrm{mm}$	$d \ / \ \mathrm{mm}$
0.34	0.93 ± 0.02	0.94 ± 0.05
0.68	0.96 ± 0.03	0.93 ± 0.07
1.36	0.87 ± 0.04	0.93 ± 0.08
2.04	0.83 ± 0.04	0.89 ± 0.08

Table S2. Tube diameter at different ${\rm CaCl}_2$ concentrations and injection rates.

Table 55. Equilibrium constants for the calculatio	Table S3.	Equilibrium	constants	for the	calculation
--	-----------	-------------	-----------	---------	-------------

pK_{sp1}	18.92
pK_{sp2}	6.58
pK_{sp3}	5.19
$\log K_{H1}$	12.35
$\log K_{H2}$	7.199
$\log K_{H3}$	2.148
$\log \beta_1$	1.30