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Contents: The Supplementary Information (SI) contains a number of items that are used to support the results in
the main text. We first present the theoretical results based on the numerical solution of the exact coupled stochastic
integro-differential (SID) equations, describing the evolution of the inert tracer particles (TP) embedded in a growing
multi-cellular spheroid (MCS). Using the numerical solution for the coupled SID equations and scaling ansatz, we
predict the exponents characterizing the dynamics of the TPs in the intermediate (t ≤ τ with τ being the time in
which the CCs divide) and t � τ . We then provide additional results from the simulations, which not only validate
the theoretical predictions but also elucidate the mechanism that determines the unusual dynamics of the TPs, driven
solely by the active forces generated by division and apoptosis of the CCs. The simulations also validate the essential
result in the main text by showing that the inert TPs sense the local stresses in an evolving tumor in which the CCs
exhibit non-equilibrium behavior.

Time-dependent equations for the TP and CC densities: Let us consider tracer particles (TPs) that are
embedded in a growing tumor spheroid, as shown Fig. S1a. We model the short-range inter-cell interactions as a sum
of two Gaussians that account for repulsion (arising from elastic forces) and attraction (mediated by E-cadherin).
The former accounts for volume exclusion due to the neighboring TPs and the cancer cells (CCs). In addition, the
TPs and CCs are also subject to a random force characterized by a Gaussian white noise spectrum. We assume that
the dynamics of the system, consisting of the CCs and TPs (Figure S1 for snapshots generated in simulations) can be
described by the over damped Langevin equation,

dri
dt

= −
N∑
j=1

∇U(|ri − rj |) + ηi(t), (S1)

where ri is the position of a CC or a TP, and ηi(t) is a Gaussian random force with white noise spectrum. The form
of U(|ri − rj |) between a pair of particles (can be either TP-TP, TP-CC or CC-CC) is taken to be ,

U(|r(i)− r(j)|) =
ν

(2πλ2)3/2
e
−|r(i)−r(j)|2

2λ2 − κ

(2πσ2)3/2
e
−|r(i)−r(j)|2

2σ2 , (S2)

where λ and σ are the ranges of the repulsive and attractive interactions, and ν and κ are the interaction strengths.
Thus, the interactions involving the mixture of CCs and TPs are identical. The potential in Eq.(S2) is one of the
model used in the simulations. When Eq. (S1) is used to describe the TP dynamics, the potential, UTP , contains both
the TP-TP and TP-CC interactions with the corresponding attractive (repulsive) interaction ranges being σ1(λ1) and
σ2(λ2), respectively. The potential UCC for the CCs mimics cell-cell adhesion (second term in the above equation),
and the excluded volume interactions, and the CC-TP interactions.

A formally exact equation for the CC density, φ(r, t) =
∑
i φi(r, t) ( φi(r, t) = δ[r − ri(t)]) can be obtained using

the well-known Dean’s method [1]. The time evolution for φ(r, t) is given by,

∂φ(r, t)

∂t
= Dφ∇2φ(r, t) +∇ ·

(
φ(r, t)

∫
dr′[ψ(r′, t)∇UCC−TP (r− r′) (S3)

+φ(r′, t)∇UCC(r− r′)]) +
ka
2
φ(

2kb
ka
− φ) +∇ ·

(
ηφ(r, t)φ1/2(r, t)

)
+

√
kbφ+

ka
2
φ2fφ ,

where ηφ satisfies < ηφ(r, t)ηφ(r′, t′) >= 2Dφδ(r− r′)δ(t− t′) and fφ satisfies < fφ(r, t)fφ(r′, t′) >= δ(r− r′)δ(t− t′).
The term ∝ φ(φ0 − φ) accounts for cell division (rate = kb) and apoptosis (rate = ka), with φ0 = 2kb

ka
[2, 3]. The

coefficient of fφ, given by
√
kbφ+ ka

2 φ
2, is the strength of the noise corresponding to number fluctuations of the CCs,

and is a function of the CC density. Similarly, the evolution of the density of TP, ψ(r, t) =
∑
i ψi(r, t) =

∑
i δ[r−ri(t)],

may be written as,

∂ψ(r, t)

∂t
= Dψ∇2ψ(r, t) +∇ · (ψ(r, t)

∫
r′

[ψ(r′, t)∇UTP (r− r′) (S4)

+φ(r′, t)∇UTP−CC(r− r′)]) +∇ ·
(
ηψ(r, t)ψ1/2(r, t)

)
.

where ηψ satisfies < ηψ(r, t)ηψ(r′, t′) >= 2Dψδ(r− r′)δ(t− t′).
The equations for φ(r, t) and ψ(r, t) constitute coupled non-linear stochastic integro-differential (SID) equations,

which are difficult to solve analytically. Usually approximations, often without establishing their validity, are used
to solve the Dean’s equation for one component fields. Here, we solve, by direct numerical integration, the coupled
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(a) (b)

Figure S1: Snapshot from tumor simulations with embedded tracers. (a) A 3D simulated spheroid consisting of
approximately 4,800 CCs and 100 TPs. The CCs are in cyan, and the tracers are in red. (b) The spheroid was rendered by
making the CC cells transparent (light colored cyan) in order to show the interior of the spheroid. The TPs are opaque. Some
of the TPs appear black because it is a depiction of a 3D image. The purpose of displaying these snapshots is to visually show
that the TPs are randomly distributed within the multicellular spheroid, implying that their migration is largely determined
by the forces arising from the CCs, and not due to TP-TP interactions.

SIDs involving the fields φ(r, t) and ψ(r, t) (Eqs.(S3) and (S4)). Because the thrust of the theoretical calculations is
on the motility of the TPs and how they affect the CC dynamics, we numerically calculated the correlation functions
associated with the TP density field (ψ(r, t)). From the decay of the correlation functions, and using the expected
scaling behavior, we evaluated the dynamical exponents (values of zs) for the TPs. The exponent z is related to the
mean-square displacement (MSD ∼ t2/z).

By numerically integrating Eqs. S3 and S4, we calculated the density-density correlations for the TPs, Cψψ(t) =∫
d3rCψψ(r, t) where Cψψ(r, t) =< ψ(r, t)ψ(r, t) > − < ψ(r, t) >< ψ(r, t) >. Based on the previous works [4–6] we

expect that TP density correlation function Cψψ(t) should decay as Cψψ(t) ∼ t1− 2
z−

d
z (d is the spatial dimension). By

fitting the expected scaling behavior for Cψψ(t) to the numerical solution to the SIDs the value of z can be extracted.
The MSD exponent is given by 2/z.

Using the numerical results we calculated Cψψ(t), which is shown in Fig.(2a) in the main text. We find that, both
at short (t < τ with τ = 1/kb) and long times, (t > τ) Cψψ(t) decays as a power law. By fitting the short time decay

to t1−2/z−d/z ≈ t−3/7 (green dashed line in Fig.(2a) in the main text) we extract z = 7/2 in d = 3. The corresponding
MSD exponent βTP = 2/z = 4/7, which implies that for t/τ less than unity the TP motion is sub-diffusive. Similarly,
for t/τ > 1, we find that z = 7/8, which leads to the MSD exponent αTP = 16/7. Thus, the TP dynamics changes
from sub-diffusive (glass-like) behavior at short times to hyper-diffusive motion at long times. The crossover occurs



4

when the cell proliferation becomes relevant. A summary of the values of the exponent is given in Table II.
Simulations: As explained in the main text, for the TPs to serve as local stress sensor they should not significantly

alter the dynamics or the local environment of the CCs. To ascertain if this holds, we performed a variety of simulations
by changing the TP size, the cell division time, and turning off the interaction between the TPs. The results of these
simulations are described below.

Definition Parameters Value Remarks

Cell diffusion constant Dφ 10−8µm2/s Dφ = kBT
6πηR

(T = 300K, η = 0.005 kg
µms

, R ≈ 5µm)

Tracer diffusion constant Dψ 10−8µm2/s Dψ = kBT
6πηR

(T = 300K, η = 0.005 kg
µms

, R ≈ 5µm)

Cell division rate kb 1/τ, τ = 54, 000s Reference [7]
Cell apoptosis rate ka 0.1kb Reference [7]

Box size L 500 µm This Study
Repulsive interaction range λ 10 µm This Study (Scale of a cell)
Attractive interaction range σ 10 µm This Study (Scale of a cell)

Repulsive interaction strength ν 103µN · µm4 ν = Uλ3, U = 10−1µNµm(Reference [7])

Attractive interaction strength κ 100µN · µm4 ν = Uλ3, U = 10−1µNµm(Reference [7])

Integration time step δt 0.01τ This Study

Poisson ratio νi 0.5 Reference [7]

Elastic modulus Ei 10−3MPa Reference [7]

Adhesive coefficient fad 10−4µN/µm2 Reference [7]

TABLE I: Parameters (except last three) used in the numerical integration of Eqs. S3 and S4. The values of the additional
parameters (last three) are used in the simulations. Remarks explain the choice of parameter values.

αTP is nearly independent of the TP size: We varied the radius of the TP (rTP ) from 0.5rc to rc, where
rc = 4.5µm is the average CC radius. Figure S2 shows ∆TP (t) as function of t for the Hertz potential (Eq.(5) in
the main text). Similar behavior is found for the Gaussian potential as well. In the intermediate time regime, the
larger sized TPs have higher MSD because they experience greater repulsive forces due to the larger excluded volume
interactions. In the long time limit, ∆TP exhibits hyper-diffusion (insets in Figure S2). The CC-TP interaction
term, ∇·

(
ψ(r, t)

∫
dr′φ(r′, t)∇U(r− r′)

)
, in Eq.(S4) shows that the radius merely alters the interaction strength, and

does not fundamentally change the scaling behavior. The conclusion that the values of αTP do not change, anticipated
on theoretical grounds, is supported by simulations.

CC cell division does not significantly alter the TP dynamics: Fig.(S3) shows the influence of cell division
on ∆TP (t) for the Hertz and Gaussian potentials, described in the Methods section in the main text. It is clear that
by varying the cell division time from (0.5−2)τ , the short time glassy dynamics as well as the hyper-diffusive behavior
are maintained. Even the values of the exponents (βTP and αTP ) are not significantly altered.

Effect of TP-TP interactions: Typically, in experiments the number of TPs in a given MCS is only about four
or five, which implies that the density of the TPs are negligible. It is unlikely there is any interaction between the TPs.
Even though we use 100 TPs in the simulations, the mean distances between them are so large that UTP−TP ≈ 0.
We expect that TP-TP interactions should have negligible effect on the dynamics of TPs or the CCs. We performed
simulations with and without TP-TP interactions. Fig.(S4) clearly shows that neither ∆TP (t) nor ∆CC(t) is affected
by TP-TP interactions.

Influence of the TPs on the CC dynamics: We calculated ∆CC(t) as a function of t using the Hertz (Gaussian)
potential as a function of the TP radius (Figure S5a (S5b)). For both the potentials, the values of ∆CC(t) for t < τ
increases as the TP sizes increase.

Before cell division, the number of CCs and TPs are similar, which explains the modest influence of the TPs on the
dynamics of the CCs in the intermediate time regime. The larger TPs experience stronger repulsion (the repulsive
interaction is proportional to R2) initially, which increases the magnitude of ∆CC(t). The long-time dynamics is not
significantly affected by the CC-TP interactions (see Figure S5). In the absence of the TPs, the CCs exhibit super-
diffusive behavior where the MSD scales as tαCC with αCC = 1.33[7]. In the presence of the TPs, the CC dynamics
remains super-diffusive with αCC ≈ 1.45, which shows that the TPs do not alter the CC dynamics significantly. The
results in figures (S2)-(S5) show that the influence of TPs on the CCs is minimal, which fully justifies their use as
pressure sensors. The predictions for the CC dynamics made here remains to be tested.

Straigtness Index: The Straightness Index (SI) is, given by, SIi =
ri(tf )−ri(0)∑

δri(t)
, where ri(tf ) − ri(0) is the net

displacement of ith TP or CC. The denominator,
∑
δri(t), is the total distance traversed. Fig. S6 shows that the

TP trajectories are more straight (higher SI values on an average) or persistent over longer duration. During each
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Figure S2: Influence of the TP size on ∆TP as a function of t/τ . (a) Data are for the Hertz potential (see equations (3)-(5)
in the main text). From top to bottom, the curves correspond to decreasing TP radius (rTP = rCC (green), rTP = 0.75rCC
(red) and rTP = 0.5rCC (blue), where rCC = 4.5µm is the average CC radius). TPs with larger radius have larger MSD values
in the intermediate time ( t

τ
≤ O(1)). In the inset, we focus on the hyper-diffusive regime. The black and magenta dashed line

serves as a guide to the eye with αTP = 2.3 (b) Same as (a) except that the results are for the Gaussian interactions.
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Figure S3: Impact of cell division time τ on ∆TP (t) as a function of time (t) for the two types of CC interactions. (a) ∆TP ,
calculated using the Hertz potential (Eq.(5) in the main text). The curves are for 3 cell cycle times (blue – 0.5τ , red – τ , and
green – 2τ). Time taken to reach the super-diffusive limit, which is preceded by a sub-diffusive (glass-like or jammed) regime,
increases as τ increases. In the long-time, ∆TP (t) exhibits hyper-diffusive motion (∆TP ∼ tαTP with αTP > 2), which is
shown in the inset for three τ values. The x-axis in the inset plot is scaled by 1

τ̃
. The values of τ̃ are 0.5τ , τ , and 2τ . The

black (cyan) dashed line shows exponent αTP = 2.3 (2.1). The curve with 0.5 τ is best fit using αTP = 2.1. (b) Same as (a)
except the Gaussian potential (Eq.(6) in the main text) is used in the simulations. Interestingly, αTP does not change
appreciably, implying that the long time dynamics is impervious to changes in the short range systematic interactions.
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Figure S4: TP-TP interactions do not affect the long time dynamics of the TPs or CCs. (a) ∆CC with (red
curve) and without (blue) TP-TP interactions. The TP-TP interactions play no role in the CC dynamics. The cyan dashed
line shows αCC = 1.5 for both the cases. (b) ∆TP with (red curve) and without (blue) TP-TP interaction. ∆TP differs in
magnitude at intermediate times. However, TP-TP interactions do not impact the long time hyper-diffusive dynamics of the
TPs.
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Figure S5: Influence of TPs on CC dynamics for the two cell-cell potentials. (a) ∆CC , as function of t/τ , using the Hertz
potential (Eq.(5) in the main text). From top to bottom, the curves are for different values of the radius of the TPs (magenta
rTP = 2rCC , green rTP = rCC , red rTP = 0.75rCC and blue rTP = 0.5rCC (appears to be hidden), where rCC = 4.5 µm is
the average cell radius). In the intermediate times, ∆CC(t) is larger for TPs with larger radius. The inset focuses on long
times ( t

τ
> 1). The black line is meant to show the value of αCC = 1.47. (b) Same as (a) except that the results are the

Gaussian potential. It is note worthy that the long time MSD exponent for the CCs is unaffected by the inert TPs, even after
seven cell divisions.
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Theory Hertz Gaussian
βTP 0.57 0.12 0.11
αTP 2.28 2.30 2.30
αCC 1.45 1.47 1.50

TABLE II: MSD exponents from theory and simulations.

Figure S6: Distribution of the Straightness Index (SI). The red (blue) plot for the TPs (CCs) shows that the TP trajectories
are more rectilinear than the CCs.

cell division, the CCs are placed randomly causing the trajectories to be less persistent, thus explaining the decreased
persistence in their motion. In contrast, the TPs experience an impulsive kick in the vicinity of the CCs that undergo
cell division. The kick results in a force on the TPs, which tends to produce persistent motion, thus giving rise to the
higher SI values, as shown in Fig.(S6).

Dynamics of TPs and the stress profile do not depend on the attraction strength: Figure S7a shows
the plot of ∆TP in the presence (absence) of attraction strength, fad. The two curves deviate slightly only at short
times whereas the long-time dynamics is unaltered. This implies that the long-time dynamics does not depend on
the underlying systematic energy scale and is almost entirely dictated by active forces arising due to cell growth and
division. Similarly, the logistic form of the stress profile is also unaltered when attraction is switched off.
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Figure S7: Dynamics and Stress profile are impervious to attraction strength (fad). (a) Mean Squared
Displacement, ∆TP (t), as a function of time in the presence (fad = 10−4µN/µm2) and absence (fad = 0) of attractive forces.
Both the curves almost overlap and hence the dynamics is impervious to fad value. (b) Stress Profile in the case when agent
based simulations are performed using attraction strength, fad = 0. The logistic form of the pressure profile is retained
(similar to figure 5b of the main text). The red squares correspond to pressure on the cells whereas the green hexagrams
correspond to stress on the tracers. For both (a) and (b), the agent based simulations were performed using the Hertz
potential.
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