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Figure S1: Visualization of expanded LJ potential and the traditional LJ potential. The polymer-
nanoparticle used in this work is the expanded LJ interaction shown in black line; for comparison 
the purple line is the traditional LJ potential (set εij = 1.0, σij = 0.75 d, and rcut to 21/6 σij). Showing 
the polymer-polymer interaction (purely repulsive) for reference in red to illustrate that the 
'hardness' or potential shape for polymer-polymer interaction is the same as the polymer-
nanoparticle interaction (black line). 
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I. Tetrahedral and octahedral pore information 

 
 For a nanoparticle-based hexagonally close-packed (HCP) crystal, the two types of pores 
are tetrahedral and octahedral. Figure S2 shows how each of the pores appear in a perfect HCP 
crystal (top) and the simulation box used for the individual tetrahedral and octahedral pores in the 
main text Section III (bottom). Table S1 provides the tetrahedral and octahedral pore radii for the 
largest sphere that can be placed in the pore without touching the neighboring nanoparticles based 
on the pore geometry.1 

 

 
Figure S2: Visualization of the tetrahedral and octahedral pores found in an HCP crystal. a) 
provides a circle-based representation of the tetrahedral and octahedral pores with nanoparticles 
in different z planes marked in either blue or red. b) visualization of tetrahedral and octahedral 
pores as simulated in this work. The top row shows just the nanoparticles to illustrate the pore, 
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and the bottom row includes the polymer (each polymer colored separately) and solvent (gray 
transparent spheres).  
 
 
Table S1: Tetrahedral and octahedral pore radii1 
 

Pore type 
Pore radius 

(percent of NP 
radius) 

Pore radius (d) 

Tetrahedral ~22.5% 5.625 

Octahedral ~41.4% 10.35 
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II. Validation of bulk polymer characteristics from our simulations  
 
 We validate that the model and simulation method used in this study reproduce key 
polymer structural (Rg) and dynamical (polymer relaxation) scaling with polymer length and 
polymer concentration.2-5 For a dilute solution, <Rg2> is given by: 

〈𝑅!"〉 = 〈𝑅!#" 〉 = 𝑁"$       (S1) 
with N defined here as the number of beads in the polymer chain and ν the scaling exponent. For 
a good solvent (system of interest for our study), ν is expected to be ~0.6.2-5 ESI Figure S3a shows 
the <Rg2> from the 1%v dilute concentration for all polymer lengths considered. Because Equation 
S1 is only valid for sufficiently long polymer chains, we obtain ν = 0.61 by fitting the N = 114 and 
N = 228 systems which is in good agreement with expectations.2-5  

As the polymer concentration increases, the <Rg2> scaling with polymer concentration is 
given by: 

〈𝑅!"〉 = 〈𝑅!#" 〉 &
%
%∗
'
("$'()/(('+$)

     (S2) 
with c as the polymer concentration and c* as the overlap concentration as previously defined in 
the manuscript. ESI Figure S3b shows the <Rg2> for the N = 114 and N = 228 systems as the 
polymer concentration increases causing a shift from the dilute to semi-dilute regime. The black 
line is Equation S2 to illustrate the change in <Rg2> scaling with polymer concentration with ν set 
to 0.61 as found above.  

Finally, we demonstrate how the longest polymer relaxation time τr scale with polymer 
length and concentration (ESI Figure S3c and S3d). The polymer relaxation time is calculated 
from the polymer chain end-to-end vector autocorrelation function (Equation 3 in the manuscript). 
The longest polymer relaxation time is obtained by fitting an exponential decay function to the 
autocorrelation function to extract the relaxation time τr. In dilute conditions, the relaxation time 
should scale with polymer chain length N according to5, 6  

𝜏, = 𝑁+$        (S3) 
For semi-dilute polymer solutions in the unentangled regime, the polymer relaxation time should 
scale with polymer concentration as 

𝜏, = 𝜏,# &
%
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      (S4) 
For semi-dilute polymer solutions in the entangled regime, the polymer relaxation time scales as 

𝜏, = 𝜏,# &
%
%∗
'
(+'+$)/(+$'()

      (S5) 
For the polymer lengths and concentrations studied in this work, the polymers are in the 
unentangled regime. The relaxation scaling in Equation S5 is not reached and serves as an 
illustration for if longer polymers or higher concentrations were considered. ESI Figure S2d 
achieves a similar relaxation time dependence profile as that obtained in previous simulations5 and 
experiments.7 
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Figure S3: Structural and dynamical validation to expected polymer scaling in a good solvent as 
polymer length N and polymer concentration are varied. a) <Rg> scaling for the 1%v dilute 
systems as N varies. The black line is the scaling prediction from Equation S1 with ν = 0.61. b) 
relative <Rg2> scaling as the scaled polymer concentration c/c* is changed for N = 10 (purple), 
N = 114 (red,) and N = 228 (blue). The black line is the scaling prediction from Equation S2 with 
ν = 0.61. c) longest polymer relaxation time at infinite dilution scaling with polymer length. The 
black line is Equation S3 with ν = 0.615. d) relative longest polymer relaxation time scaling with 
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polymer concentration in the semi-dilute regime. The solid black line is the scaling prediction from 
Equation S4, and the dot-dash black line is the scaling prediction from Equation S5. 
 
We calculate the thermal blob radius using:2 

𝜉- =
𝑏.

|𝑣| 

with b as the Kuhn segment size. We calculate the excluded volume v by integrating the Mayer f-
function using the purely repulsive WCA U(r):2 

𝑣 = -(1 − exp 4−
𝑈(𝑟)
𝑘𝑇 : 𝑑+𝑟 

We find the thermal blob size is ~7.30 d (radius of 3.65 d). For the N = 10 case, the largest Rg (of 
the least concentrated system 1%v) is 1.74 d, so the polymer length is shorter than the thermal blob 
size. This is why Figure S3a shows the N = 10 system with an Rg2 below that predicted from 
scaling relations of a dilute polymer in a good solvent. We further illustrate this point of not 
following swelling behavior in Figure S3b with the N = 10 data lying below the data from N = 
114 and 228.  
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III. Additional information 
  

 
Figure S4: Average number of unique solvent beads directly contacting the polymer chain for bulk 
and HCP confined systems. a), b), and c) display the average number of solvent beads contacting 
the polymer chain of the N = 10, N = 114, and N = 228 polymer lengths respectively. The red, 
purple, and blue colors are the bulk polymer results for 1%v, 10%v, and 25%v polymer 
concentrations. The orange, pink, and cyan colors are the HCP confined polymer results for the 
1%v, 10%v, and 25%v polymer concentrations. Error bars are shown as the standard deviation 
from 3 replicates for all systems except for the N = 228, 1%v, HCP system (orange bar in c)) 
which is the standard deviation from 10 replicates. 
 
 

 
Figure S5: Mean squared displacement (MSD) of polymer center of mass for bulk and HCP 
confined systems. a), b), and c) display the MSD of the N = 10, N = 114, and N = 228 polymer 
lengths respectively. The red, purple, and blue colors are the bulk polymer results for 1%v, 10%v, 
and 25%v polymer concentrations. The orange, pink, and cyan colors are the HCP confined 
polymer results for the 1%v, 10%v, and 25%v polymer concentrations. Error bars are shown as 
the standard deviation from 3 replicates for all systems except for the N = 228, 1%v, HCP system 
(orange line in c)) which is from 10 replicates. 
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Figure S6: Determination of polymer localization into nearest tetrahedral or octahedral pore, 
and the polymer movement between pores broken into the specific pore type. a) describes the 
fraction of all polymer beads classified as being near to a tetrahedral or octahedral pore broken-
down into full pores (pores not interrupted by simulation box edges) and partial pores (pores 
interrupted by simulation box edges). b) quantifies the number of all polymer beads that either 
enter or leave a pore over an interval of 156,250 τ. Similar to a), b) categorizes the polymer beads 
movement between pores for both full pores and partial pores. The error bars for all plots are the 
standard error of the mean of 3 independent replicates. 
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Figure S7: Determination of polymer movement between tetrahedral and octahedral pores 
normalized by polymer concentration and polymer chain length. a) and b) quantify the number of 
all polymer beads divided by the polymer concentration that either enter or leave a pore over an 
interval of 156,250 τ. b) categorizes the polymer beads movement between pores for only full pores 
divided by the polymer concentration. c) and d) quantify the number of all polymer beads divided 
by the polymer chain length that either enter or leave a pore over an interval of 156,250 τ. d) 
categorizes the polymer beads movement between pores for only full pores divided by the polymer 
chain length. The error bars for all plots are the standard error of the mean of 3 independent 
replicates. 
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