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Figure S1. Application of the Winter-Chambon criterion for
Fe-PAA hydrogels: at the gel point (xFe(III) = nFe(III)

/
nPAA =

0.12%) the loss factor tanδ=G′′/G′ becomes frequency inde-
pendent, resulting in a crossover when tanδ is plotted against
the crosslinker fraction. [1]
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Figure S2. Specific viscosity ηsp = (η0 − ηsolvent)/ηsolvent of
pure PAA solutions as a function of the quantity c[η], for two
molar fractions (relative to monomer) of ferric ions present
during polymerization. c was varied from 1 wt% to 30 wt%.
Intrinsic viscosities [η] were determined by using the Martin
equation log10(ηsp/c)= log10[η]+K[η]c. [2] The weight fraction
10 % used in the hydrogel samples is indicated.

ESI2 Molar mass estimation of PAA

Experimental: Molar masses of the PAA gels were estimated via a diffusion coefficient measurement. A
calibration with commercially available PAA of different molar masses (Sigma-Aldrich: 2000 g/mol, 5100
g/mol, 15 000 g/mol, 250 000 g/mol; Polysciences: 50 000 g/mol) was conducted for this purpose. All
Fe(III) from two samples with 0.05 % and 0.4 % was removed by dialysis as explained in the main text.
Dilute PAA solutions with 0.5 wt% polymer were prepared with acidic 0.1 M DCl solution in D2O in order
to ensure full protonation. PFG-NMR measurements were measured on a 400 MHz NMR spectrometer
(AVANCE III HD 400, Bruker BioSpin, Ettlingen, Germany), equipped with a gradient probe head (DIFFBB,
Bruker BioSpin). Signal attenuation of the PAA signal was obtained in a stimulated echo pulse sequence,
where the maximum gradient strength G was varied from 2 T/m to 4 T/m, while the gradient pulse duration
and diffusion time were chosen as δ = 1 ms and ∆ = 100 ms, respectively.
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Figure S3. Estimation of the PAA molar mass by means of a diffusion NMR spectroscopy calibration. (a) Diffusion coefficient
distributions for commercial PAA samples with Mw, as reported by the manufacturer. (b) Calibration curve of the principal
diffusion coefficient D0. (c) Diffusion coefficient distributions of two PAA samples with different ferric ion fractions present during
polymerization.

Analysis: The concept of a pulsed field gradient-NMR experiment is described in [3]. As reported in
literature [4, 5], the signal attenuation curves of polymers in dilute solution can be modelled by a assuming
a probability distribution P(D) of diffusion coefficients:

I
I0

=
∫ ∞

−∞
P(D)exp

[−(
γ2G2δ2 (∆−δ/3)

) ·D]
dlnD, (1)

S2



where γ is the gyromagnetic ratio of the 1H nucleus. Commonly, a log-normal distribution is assumed for
P(D):

P(D)= 1p
2πσ

exp
[
− (lnD− lnD0)2

2σ2

]
. (2)

Fig. S3(a,b) shows the probability distributions and a calibration curve relating the principal diffusion
coefficient of several commercial PAA samples to Mw, as reported by the manufacturer. Fig. S3(c)
shows P(D) for two PAA-samples where ferric ions were removed by dialysis, leading to an estimate of
Mw,0.05 = (7±2) ·105 g mol-1 and Mw,0.4 = (6±2) ·105 g mol-1.
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Figure S4. Examples for the determination of temperature-dependent relaxation times: (a) τch for a sample below the gel point
(xFe(III) = 0.05 %). The complex shear modulus is converted to the complex viscosity by η̂ = Ĝ

/
(iω), where the imaginary part

−η′′ shows a maximum at ω= τ−1
ch . The relaxation times, displayed as filled circles, are then fitted with the Williams-Landel-Ferry

equation (10). (b) τcr for a sample above the gel point (xFe(III) = 0.5 %). Here, G′′ shows a maximum at ω= τ−1
cr , which can be

extrapolated by the use of the model discussed in the main text if no apparent maximum is visible. The relaxation times τcr are
fitted to an Arrhenius model.
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Figure S5. Arrhenius plot of all relaxation times determined directly from raw data for samples below the gel point (τch, from
maximum of −η′′) and above the gel point (τcr, from maximum of G′′), respectively.
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Figure S6. Example for time temperature superposition of separate relaxation modes (xFe(III) = 0.5 %). After vertical shifting,
horizontal shifting towards (a) low ω or (b) high ω fails to superimpose the dynamic moduli adequately across the entire ω-range.
Subtracting of either the high-frequency or low-frequency contribution, respectively, improves the superposition quality.
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Figure S7. (a) Vertical shift factors bν obtained from experimental shift factors bT by bT = bνTref
/

T. (b) Enthalpy values obtained
from the local slope at 25 ◦C from the relation ln(bν) = ln

(
ν(Tref)

/
ν(T)

) = (
∆RH◦/R

) · (T−1 −T−1
ref

)
. As this approximation is valid

for networks far above the gel point, data are extrapolated with an exponential fit to obtain ∆RH◦ = 9.4 kJ mol-1 for xFe(III) →∞.
(c) Sketch explaining the reversal of bν: in a complete gel, the number density ν of network chains decreases with increasing T as
crosslinks break; in an incomplete gel just above the gel point, crosslink dissociation leads both to an increase or decrease in ν,
depending on the connectivity of the crosslink; in the sol, ν of isolated chains increases with increasing T.
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Figure S8. (a) Horizontal shift factors a′T obtained from high-frequency guided time-temperature superposition, before and after
correction by an additional shift factor aN = b2

ν. (b) Summary of all horizontal shift factors aT (low-frequency guided TTS) and a′T
(high-frequency guided TTS) for different ferric ion fractions. Lines between points are guide to the eye.
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Figure S10. Solution pH of aqueous acrylic acid (10 wt%, cor-
responding to 1.39 M) with different molar fractions (relative to
acrylic acid) of Fe(NO3)3.

ESI3 Comment on the equivalence of VFT and WLF approaches

The Williams-Landel-Ferry formalism is a common method to model the temperature dependence of the
reduced relaxation time in viscoelastic polymer materials: [6]

log10

(
τ(T)
τ(Tref)

)
= −C1 (T −Tref)

C2 + (T −Tref)
, (3)

where C1, C2 are fit parameters. This expression is equivalent to the Vogel-Fulcher-Tammann (VFT)
equation, which is common in literature discussing dielectric relaxation [7, 8] or the viscosity of glass-
forming liquids [9]:

τ(T)= τ0 exp
(

B
T −T0

)
, (4)

where τ0 and B are fit parameters and T0 is the Vogel-temperature. The fit parameters of both models
can be related by:

C1 = B
/

(Tref −T0) (5)
C2 = (Tref −T0) (6)
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