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I. ANALYTICAL EXPRESSIONS FOR THE NUMBER DENSITY AND THE POLAR ORDER

Here we give full analytical expressions for the number density and polar order fields referred to in the main text.
The variables have been non-dimensionalized using the rotational diffusion time τR, the run length `, and the speed
in the absence of fields U0 (note L here is dimensionless, representing L/` in dimensional form).

For active matter confined between walls at x = 0 and L, we find the number density and polar order by solving
Eqs. (2), (3) in the main text along with the constraints n · jn|wall = 0 and n · jm|wall = 0. We solve these equations
asymptotically by doing a singular perturbation expansion in Pe−1 for PeL � 1. Additionally, in the absence of
external field, an exact solution valid at any PeL is also found. In either case, the aforementioned no-flux conditions

determine solutions up to a multiplicative constant that is found using the additional constraint 1
L

∫ L
0
ndx = 〈n〉 = 1

L .
When there is no external field (U = 1, χR = 0), the exact solution is
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Here, nc is the number density at the center of the confinement and can be found using the constraint 1
L

∫ L
0
ndx = 〈n〉.

This exact solution is consistent with the previous calculation on confined active matter [1]. The number density in
(1) rewritten as

n
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where n0 = nc
1+ Pe

d(d−1)
1
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, is similar to that reported in Ref. [2].

The exact solution expanded in Pe−1 takes the form
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where the bulk number density nbulk = nc. Here, the leading order terms display a linear combination of the near-wall
solution [2] and the bulk solution.

In the presence of a field that modulates the self-propulsion speed in the wall normal direction (say U = 1 −
αL
(
x
L −

1
2

)
), the asymptotic solution for weak fields (αL � 1) is
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Here, Ul = 1 + αL
2 and λl = Pe

√
U2
l

d + (d−1)
Pe are the speed and the inverse boundary layer thickness at the left wall.

The corresponding quantities at the right wall are Ur = 1− αL
2 and λr = Pe

√
U2
r

d + (d−1)
Pe .

On the other hand, in the presence of a field that orients the particles normal to the walls and for field strengths
χR � λ ∼ Pe, the asymptotic solution expanded in terms of λ−1 ∼ Pe−1 is
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Here, the leading order solution is
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while the first order solution is
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The concentration at the center of the confinement at leading and first order, n
(0)
c , n

(1)
c , respectively, can be found

from the constraints 1
L

∫ L
0
n(0)dx = 〈n〉 and

∫ L
0
n(1)dx = 0. In addition to the constraint χR � Pe, we need also

χR ≤ O (1) for this theory to hold because otherwise the nematic order becomes large enough to invalidate the zero
nematic order closure based on which this theory is built.

In the main text, we only considered the leading order solution to develop a simple theory. But the accuracy of
this theory and hence the match with Brownian Dynamics (BD) simulations can be improved by considering the
next order solution. For instance, the number density and polar order reported in Fig. 4 in the main text become
those shown in Fig. S1 here, upon inclusion of the next order solution; the improvement in matching with the BD
simulations is apparent.

If the orienting field in wall normal direction is not constant and varies spatially, H = H (x) Ĥ, then the asymptotic
solution for field strengths χR � λ ∼ Pe is
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Here, G (x) =
∫
H (x) dx and the concentration at the center of the confinement nc can again be found from the

constraint 1
L

∫ L
0
ndx = 〈n〉.

Lastly, in the presence of a field that orients particles parallel to the walls, the number density n and the polar
order normal to the walls mx are independent of the field and hence follow the expressions derived in the absence of
field (6), (7). But the polar order along the walls my depends on the field and satisfies

my
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Here also, χR ≤ O (1) is required for negligible nematic order and the validity of this theory.
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FIG. S1: The number density (a), and the polar order (b) associated with the active matter subjected to the
orienting field normal to the walls. The symbols denote the BD simulation results while the lines represent the

higher order theory. The confinement region L is 10 times larger than the microscopic length δ.
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II. BROWNIAN DYNAMICS SIMULATIONS

The Brownian Dynamics simulations reported in the main text are carried out by numerically integrating over-
damped Langevin equations in time [3]

0 = −ζẋ + Fswim + FB , (18)

0 = −ζRΩ + Lext + LR, (19)

where the particle orientation q follows dq
dt = Ω× q. Here ζ, ζR, are the the translational and rotational resistances.

The swim force Fswim = ζU (x) q and the torque exerted by the orienting field Lext = ζRΩc (q×H). The fluctuating

force FB and the torque LR follow the usual white noise statistics: FB (t) = 0, FB (0) FB (t) = 2kBTζδ (t) I,

LR (t) = 0, LR (0) LR (t) = 2ζ2Rδ (t) I/τR, where the overbar denotes an ensemble average.

The numerical integration of the Langevin equations is carried out using the Euler-Maruyama scheme with the
time-step ∆t = 10−4τR [4]. The simulations are run for 105 particles until the time t = 100τR. The penetration of
particles into the wall is avoided by using the potential-free algorithm [5]. The wall separation L already includes the
particle size, and thus the algorithm simplifies to setting the particle position x to 0 or L, respectively, if x < 0 or
> L.

III. NEMATIC ORDER

We also solved the Smoluchowski equation numerically using in-house FEM code. The numerical solution yields
the probability density, from which its moments were evaluated. The first two moments, the number density and the
polar order, computed are consistent with theory and BD simulations. Typical values of the next moment, nematic
order, at various Pe, χR and αL are shown in Fig. S2. Nematic order is small and hence we assume it is safe to neglect
for Pe < 103 and field strengths αL < 1, χR < 1.
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FIG. S2: The nematic order associated with the active matter without any field (a), or subjected to a speed
modulating (b) or an orienting field (c) normal to the walls, or an orienting field parallel to the walls (d), (e). The

confinement region L is chosen as 10 times larger than the microscopic length δ.
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