# **Supporting Information**

# Dynamics of a two-dimensional active polymer chain with a rotation-restricted active head

Han-Xian Hu<sup>1</sup>, Yi-Fan Shen<sup>1</sup>, Chao Wang,<sup>2,a)</sup> and Meng-Bo Luo<sup>1,b)</sup>

<sup>1</sup> Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China

<sup>2</sup> Department of Physics, Taizhou University, Taizhou 318000, Zhejiang, China

Corresponding Author

<sup>a)</sup> Chao Wang (chaowang0606@126.com); <sup>b)</sup> Meng-Bo Luo (luomengbo@zju.edu.cn)

## 1. Orientational autocorrelation function

The orientational autocorrelation function C(t) of the orientation of self-propulsion force,  $\mathbf{n}(t)$ , is defined as  $C(t) = \langle \mathbf{n}(t_0) \cdot \mathbf{n}(t + t_0) \rangle$ . The evolution of C(t) with time t is presented in Figure S1. We find that C(t) roughly decays exponentially as  $C(t) = e^{-t/\tau_r}$ . Here the persistence time  $\tau_r$  is estimated mostly from the decay of C(t) in the region 0.05  $\langle C(t) \langle 0.5 \rangle$  where C(t) shows the best exponential decay.



Fig. S1. Semi-logarithm plot of the evolution of the orientational autocorrelation function of the self-propulsion force, C(t), for the active polymer with a rotation-restricted head ABP. Polymer length N = 64 and self-propulsion force  $f_s = 30$ .

#### 2. Elongation of the active polymer chain with a rotation-restricted head ABP

Figure S2 presents the dependence of the mean square radius of gyration  $\langle R_G^2 \rangle$  on the rotational friction coefficient  $\eta_r$  for polymer chains of length N = 64 under selfpropulsion force  $f_s = 7$  and 30. We can see that  $\langle R_G^2 \rangle$  of the active polymer under selfpropulsion is always larger than that of a corresponding passive polymer ( $f_s = 0$ ) with  $\langle R^2 \rangle_0 = 69 \pm 2$  for N = 64.

Figure S3 presents the dependence of mean square end-to-end distance  $\langle R^2 \rangle$  and  $\langle R_G^2 \rangle$  on self-propulsion force  $f_s$ .  $\langle R^2 \rangle$  and  $\langle R_G^2 \rangle$  increase gradually with increasing  $f_s$ .

Figure S4 presents the dependence of  $\langle R^2 \rangle$  and  $\langle R_G^2 \rangle$  on N for the active polymer with  $f_s = 30$  and the corresponding passive polymer ( $f_s = 0$ ). For the passive polymer, we have  $\langle R^2 \rangle \propto N^{1.5}$  and  $\langle R_G^2 \rangle \propto N^{1.5}$ . The exponent 1.5 is consistent with the known result for two-dimensional self-avoiding polymers. While for the active polymer with  $f_s = 30$ , we find the scaling exponent is close to 2 for relatively short chains, indicating a rod-like conformation under self-propulsion of the head ABP. We find the data deviate gradually from the scaling relations  $\langle R^2 \rangle \propto N^2$  and  $\langle R_G^2 \rangle \propto N^2$  with the increase of N. And  $\langle R^2 \rangle$ and  $\langle R_G^2 \rangle$  of long RRAP tend to approach that of the passive polymer. The reason is that the effect of the self-propulsion of the head ABP is limited, i.e., the RRAP becomes flexible with increasing N.



Fig. S2. Log-log plot of the mean square radius of gyration  $\langle R_G^2 \rangle$  versus the rotational friction coefficients  $\eta_r$  for the active polymer of length N = 64 under self-propulsion force  $f_s = 7$  and 30. The dashed line with  $\langle R_G^2 \rangle_0 = 69 \pm 2$  denotes  $\langle R_G^2 \rangle$  of the corresponding passive polymer chain of N = 64.



Fig. S3. Plot of mean square end-to-end distance  $\langle R^2 \rangle$  and mean square radius of gyration  $\langle R_G^2 \rangle$  versus self-propulsion force  $f_s$  for the active polymer. Polymer length N = 64 and rotational friction coefficient  $\eta_r = 1$ .



**Fig. S4**. Log-log plot of mean square end-to-end distance  $\langle R^2 \rangle$  (a) and mean square radius of gyration  $\langle R_G^2 \rangle$  (b) versus polymer length *N* for the active polymer (red squares) with  $f_s = 30$  and the corresponding passive polymer (blue stars). The rotational friction coefficient is  $\eta_r = 1$ . The red solid lines have a slope of 2 and the blue dashed lines have a slope of 1.5.

### 3. Diffusion property

The mean squared displacement of the two-dimensional active polymer at long timescales can be expressed as  $\langle \Delta r^2(t) \rangle = 4D_{\text{eff}}t$ . The diffusion of the active polymer can be attributed to the active force of ABP and thermal noise. Thus we have  $D_{\text{eff}} = D_{\text{P}} + D_{\text{T}}$  with  $D_{\text{P}}$  and  $D_{\text{T}}$  are the coefficients of propulsive and thermal diffusion, respectively. For the present active polymer model, we have  $D_{\text{P}} \propto f_s^2 \tau_r / N^2 \eta_t^2$  and  $D_{\text{T}} \propto k_{\text{B}}T/N\eta_t$ . It is interesting to estimate the crossover value of  $f_{\text{s,c}}$  at which  $D_{\text{P}} = D_{\text{T}}$ . We thus have a simple relation  $f_{\text{s,c}}^2 \propto k_{\text{B}}T\eta_t N/\tau_r$ .



Fig. S5. Plot of the crossover value of  $f_{\rm s,c}$  versus polymer length N for the active polymer with a rotation-restricted head ABP (with M) and that with a freely rotating head ABP (M = 0). Solid lines show the relation  $f_{\rm s,c} \propto N^{0.5}$ .

We have checked the dependence of  $f_{s,c}$  on N for  $\eta_t = 1$  and  $\eta_r = 1$ . The simulation results are presented in Figure S5 for the active polymer with a rotation-restricted head ABP (with M) and that with a freely rotating head ABP (M = 0). We find  $f_{s,c}$  is small for the active polymer with a rotation-restricted head ABP, in agreement with that the restriction of rotation of the head ABP will enhance the diffusion. It is interesting to see that  $f_{s,c} \propto N^{0.5}$  still holds for the active polymer with a rotation-restricted head ABP. The reason may be that, for the active polymer with M, the variation of  $f_{s,c}$  is very small, so that  $\tau_r$  can be regarded as a constant independent of  $f_s$  and N. The influence of N on  $\tau_r$  is rather weak at small  $f_s$  since the deformation of polymer is small at small  $f_s$ .