Vesicle formation induced by thermal fluctuations

Andreu F. Gallen,^{*,†} J. Roberto Romero-Arias,[‡] Rafael A. Barrio,[¶] and Aurora

Hernandez-Machado^{†,§}

†Departament Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain

‡Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, 01000 Ciudad de México, Mexico.

¶Instituto de Física, U.N.A.M., 01000, Ap. Postal 101000, México D.F., México

§Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain

E-mail: fdzgallen@gmail.com

Supporting Information Available

Appendix

Obtaining the phase field model

To write the Canham-Helfrich free energy equation in terms of a phase field order parameter ϕ we will have to first define the total and Gaussian curvatures. Having the surface normal vector \hat{n} one can define then the curvature tensor

$$Q_{ij} = \nabla_i \, n_j,\tag{1}$$

as the normal vector n changes along the surface are directly related to the curvature of a surface.

Now, using the curvature tensor Q we can write the curvature C and the Gaussian curvature K. The determinant of the curvature tensor Q is always zero, but using its trace we can write the curvature¹

$$C = \operatorname{tr}[Q]. \tag{2}$$

The Gaussian curvature is a bit more complex being

$$K = \sum_{i,j} \left[\left(Q_{ii} Q_{jj} - Q_{ij}^2 \right) \frac{1 - \delta_{ij}}{2} \right].$$
(3)

The expression is focused on the non-diagonal elements of the tensor because it is related to the overall shape that the surface takes around a point and whether is plane, curved, or presents a saddle-splay shape.

To compute the simulations with a simple model that avoid the need of tracking the interface position we will use a phase field model. Therefore, we define an order parameter $\phi(\mathbf{x})$ that represents if the volume of fluid at the point \mathbf{x} corresponds to either external or internal fluid to the vesicle. In this article, we choose the values $\phi(\mathbf{x}) = +1$ for the internal fluid of the vesicle and $\phi(\mathbf{x}) = -1$ for the external fluid. With this order parameter, we can write the curvature parameters as²

$$C[\phi] = \frac{\sqrt{2}}{\epsilon(1-\phi^2)} \Big(-\phi + \phi^3 - \epsilon^2 \nabla^2 \phi \Big), \tag{4}$$

and, to compute K, we will be using the curvature tensor written for a phase field

$$Q_{ij} = \frac{\sqrt{2}\epsilon}{1 - \phi^2} \Big[\partial_i \partial_j \phi + \frac{2\phi}{1 - \phi^2} \partial_i \phi \partial_j \phi \Big], \tag{5}$$

where ∂_i refers to a derivative and i, j can be any of our cartesian coordinates (x, y, z). We will be computing the Canham-Helfrich free energy as a phase field which we will split into two different contributions $F = F_{C_0} + F_G$, which consists of the Curvature energy term and the Gaussian curvature term. The minimisation of the Canham-Helfrich free energy is computed numerically in this scheme. In this methodology the main goal is to change from a surface energy to a volumetric energy by defining an order parameter. For this we use a surface differential expressed like

$$dS = \frac{3}{4\sqrt{2}\epsilon} \left(1 - \phi^2\right)^2 dV.$$
(6)

Obtain T_1 and T_2

The Gaussian energy term written as a phase field model involve many derivatives of the order parameter ϕ . For simplicity, we have called them T_1 and T_2 , here we have written explicitly as introduced in.³ The various derivatives of ϕ are written for simplicity as ϕ_i where *i* is either x y z

$$T_1 = \phi_{xx}\phi_{yy} + \phi_{xx}\phi_{zz} + \phi_{yy}\phi_{zz} - (\phi_{xy})^2 - (\phi_{xz})^2 - (\phi_{yz})^2, \tag{7}$$

and

$$T_{2} = \phi_{xx}(\phi_{y})^{2} + \phi_{xx}(\phi_{z})^{2} + \phi_{yy}(\phi_{x})^{2} + \phi_{yy}(\phi_{z})^{2} + \phi_{zz}(\phi_{x})^{2} + \phi_{zz}(\phi_{y})^{2} - 2\phi_{x}\phi_{y}\phi_{xy} - 2\phi_{x}\phi_{z}\phi_{xz} - 2\phi_{y}\phi_{z}\phi_{yz}.$$
(8)

References

- Campelo, F. Shapes in cells. Dynamic instabilities, morphology, and curvature in biological membranes.; Universitat de Barcelona: Spain, 2008.
- (2) Campelo, F.; Hernandez-Machado, A. Dynamic model and stationary shapes of fluid vesicles. The European Physical Journal E 2006, 20, 37–45.
- (3) Rueda-Contreras, M. D.; Gallen, A. F.; Romero-Arias, J. R.; Hernandez-Machado, A.;

Barrio, R. A. On Gaussian curvature and membrane fission. *Scientific Reports* **2021**, *11*, 1–10.