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I. MODEL & METHODS

A. Characteristic length scales describing the stiffness

In this subsection, we relate the absolute values of stiffness spring constant to characteristic polymer length scales. We
carried out auxiliary simulations of an ideal linear chain with N = 100, with bending and bonding, but with excluded volume
interactions only between pairs of monomers directly connected by a bond. With this model, monomers separated by a large
distance along the chain contour do not interact even if they are neighbouring in the real space, hence yielding a Gaussian
chain with stiffness equal to that of our real rings.
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FIG. S1: Flory characteristic ratio as a function of subchain length for different flexibilities.

TABLE I: Mapping between the input force constant, Kbend, in bending potential Eq. 3 and emerging descriptors of
polymer flexibility. This table is an extension of Tab. 1 from the main text, also including the additional polymer setups

from Section 3.4.

βKbend 0.0 1.0 2.0 5.0 10.0 15.0 20.0 30.0 40.0

C∞ 1.0 2.6 4.0 6.6 9.4 11.4 12.9 15.4 16.9

lper/b 0.00 1.28 2.03 3.39 4.85 5.89 6.66 7.96 8.74

From conformations collected in a simulation of this model, we measured Flory’s characteristic ratio, Cs, [1]

Cs =
⟨R2(s)⟩
b2s

, (S1)

where s is the number of monomers in a selected subchain of the polymer, R(s) is the distance between the terminal monomers
of the subchain and the average ⟨·⟩ in the numerator is calculated over all subchains of s monomers. Values of Cs calculated
for s ∈ {1, . . . , 99} are shown in Fig. S1, where we can see that for s ≫ 1, we reach a plateau approximately corresponding
to C∞ = lims→∞ Cs [1]. We note that for the cases βKbend ≥ 20, the characteristic ratio is not properly converged and still
drifting at s ∼ 100, nevertheless, we carry out this procedure mainly to give the reader an idea about the length scales, not
to calculate C∞ with high accuracy. In conclusion, the values of C∞ in Tab. 1 in the main text correspond to the flexiblities
of a corresponding ideal chain with the same bending potential as our interacting rings.

To provide an estimate for the persistance length, let us consider a freely rotating chain with C∞ as measured in Fig. S1.
Following Ref. [2] and Ref. [1], it can be shown that

C∞ =
1 + cos(θ)

1− cos(θ)
=⇒ cos(θ) =

C∞ − 1

C∞ + 1
, (S2)

and finally

lper = − ⟨b⟩
ln(cos(θ))

, (S3)

arriving at values listed in Tab. 1 in the main text and extended Tab. I in ESI.

B. Minimal surfaces

We compute the minimal surface on each ring separately using Surface Evolver software [3]. The code allows to look for
the surface of minimal area given the fixed boundary by moving free vertices of a triangulated trial surface. Here we describe
just the essential elements of our implementation of the method, with full details being described in detail in [4].

The surface is initialized as a union of triangles, each defined by two (fixed) vertices coinciding with two successive monomer
positions along the ring contour and the third (free) vertex being the center of mass of the ring. The surface is then refined
once, by dividing each edge in half by a new vertex, which inherits the property of being fixed if both vertices of the edge
were fixed. The new vertices form new edges, subdividing the original triangle into four new ones. Subsequently, the free
vertices are progressively propagated proportionally to the total local surface tension force, which is the sum of forces from
all the triangles that the vertex belongs to. The force on the vertex v0 from the triangle formed by three head-to-tail vectors
s0, s1, s2 labeled in the counterclockwise direction is

F(v0) =
1

2

s1 × (s0 × s1)

|s0 × s1|
, (S4)
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where the v0 is the vertex at the tail of s0 and the surface tension is unity [3]. The total force on a vertex is then multiplied by
the step length (i.e. the proportionality constant, typically in the range of 0.1−0.3), which is optimized to reach the minimum
area faster. The optimization in essence finds three step lengths that bracket the energy and quadratically interpolates the
best one. In some cases this evolution can lead to very thin triangles that then effectively stall the minimization procedure
(because the step length is decreasing as a result of the energy bracketing). To avoid that we regularly use vertex averaging
(average the position of neighboring vertices), apply equiangulation (a procedure to redefine two adjacent triangles by
replacing their shared edge, i.e. the diagonal of the corresponding quadrilateral by the other possible diagonal, to achieve
more uniform distribution of the internal angles of the two triangles) and weeding out skinny (if area is smaller than 0.01σ2)
triangles (by removing one free vertex of an edge belonging to the skinny triangle and collapsing the two remaining edges
to one). The minimization procedure is stopped if the relative area is not changing by more than 0.1% over a course of 240
steps with intermediate equiangulation and vertex averaging (see details in [4]). Note that the topology of our surface is
fixed to that of the disc and therefore we do not aim for the true minimal surface, which might have a different topology. We
just want to achieve a surface completely contained within the boundary of the ring. We have shown by comparing different
minimization methods in [5] that for this polymer model and lengths, the procedure we use here brings us sufficiently close
to the true minimal surface if that has a disc topology, for the purposes of defining and quantifying threadings.

C. Threading analysis

To detect whether a given bond vector intersects the area of a given triangle, we use six-dimensional representation of
each line segment using the Plücker coordinates. Let us consider a line segment, a, defined by the endpoints p⃗ = (px, py, pz)
and q⃗ = (qx, qy, qz). Each Plücker coordinate of this line segment is one of the determinants of minor 2 × 2 matrices of the
matrix: (

px py pz 1

qx qy qz 1

)
, (S5)

such that

a = (pxqy − pyqx, pxqz − qxpz, px − qx, pyqz − qypz, pz − qz, qy − py). (S6)

Next, we define the side operator s(a, b) as a permutated dot product of the 6D representations of line segments a and b:

s(a, b) = a0b1 + a1b2 + a2b3 + a3b4 + a4b5 + a5b0. (S7)

Finally, to detect the threading, we invoke the side operator three times obtaining {s(x, y1), s(x, y2), s(x, y3)}, where x is the
bond vector and {y1, y2, y3} are sides of the triangle. If all of the three values s(x, y) have the same sign, the line intersects
the triangle [6].

To locate all of the threadings between the two rings, we just repeat this procedure for all possible combinations of bond
vectors of ring 1 (and ring 2) and all triangles of ring 2 (and ring 1).

D. Biased sampling & Effective potentials

The effective potential as defined in Eq. 8 is calculated from the pair correlation function, for which we can write

g(r) =
P 0(r)

P 0
id.(r)

, (S8)

where P 0 and P 0
id. are the probability density distributions of the reaction coordinate, r, in the interacting and ideal system

respectively. While the latter can be obtained analytically, the former is calculated using the biased (umbrella) sampling
and weighted histogram analysis method [7–9].

Following the notation of Ref. [10], let us consider a histogram P 0
j composed of M bins indexed as {1, . . . , i, . . . ,M} for

each of the studied systems. For each system, we carried out S independent simulations indexed as {1, . . . , j, . . . S}. Each j
corresponds to a different choice of the rj ∈ {0, 0.5σ, 1.0σ, . . . 30.0σ} in the equation Eq. 7 in the main text.

In the simulation j, we collect Nj independent samples of the reaction coordinate, which we sort into the corresponding
histogram bins nij such that

∑M
i=1 nij = Nj . Thus we obtain the biased probability distribution Pij , which is related to the

unbiased distribution as:

Pij = fjP
0
i exp (−βVj(ri)) , (S9)

where Vj is the biasing potential in the simulation j and fj is a normalization factor
M∑
i=1

Pij = 1 =⇒ fj =
1∑M

i=1 P
0
i exp (−βVj(ri))

(S10)

It can be shown, that the unbiased probability distribution is given by:

P 0
i =

∑S
j=1 nij∑S

j=1 Njfj exp (−βVj(ri))
(S11)

Eq. S11 together with Eq. S10 pose a set of M+N non-linear equations, where fi and the sought-for P 0
i have to be determined

self-consistently.
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II. EFFECTIVE POTENTIALS
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(a) fully symmetric, NA = NB = 100,
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(e) fully asymmetric,
NA = 100, C∞(A) = 1.0, NB = 50
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FIG. S2: The effective isotropic potential between the centers of mass of the two ring polymers. For the fully symmetric
case, the distance is normalized by the radius of gyration of a single ring at infinite dilution. For the asymmetric cases, a
similar normalization is applied, but using the average of the infinite-dilution radii of the rings from Eq. 9 from the main

text.
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FIG. S3: The effective isotropic potential between the centers of mass of the two ring polymers between selected fully
asymmetric cases, where we carried out simulations also for NA = 200 in addition to NA = 100. The same color

corresponds to the same NA/NB ratio.
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III. MINIMAL SURFACES
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FIG. S4: The mean area of the minimal surface of the rings as a function of ring-ring separation. For the fully symmetric
case, we show the area averaged over both rings and the distance is normalized by the radius of gyration of a single ring at
infinite dilution. For the asymmetric cases, we show areas of both rings respectively and a similar normalization of distance

is applied, but using the average of the infinite-dilution radii of the rings from Eq. 9 from the main text. The area is
normalized by the mean bond length squared. The color identifies the system, whereas line style (solid and dashed) in the

asymmetric cases differentiates the rings A and B.
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IV. RADIUS OF GYRATION
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FIG. S5: Instantaneous values of radius of gyration of ring A plotted against the corresponding value for ring B from the
same configuration for the fully symmetric case. The data are presented for two different mean ring-ring separations, r ≈ 0

(green) and r ≈ 2Rg,0 (purple) for ∼ 1000 configurations each.

FIG. S6: Instantaneous values of radius of gyration of ring A plotted against the corresponding value for ring B from the
same configuration for the fully symmetric case with NA = NB = 100 and C∞(A) = C∞(B) = 1.0. The data are presented

for extra mean ring-ring separations, r/Rg, split into three panels for better visibility, for ∼ 1000 configurations each.
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FIG. S7: Instantaneous values of radius of gyration of ring A plotted against the corresponding value for ring B from the
same configuration for the asymmetric case. The data are presented for two different mean ring-ring separations, r ≈ 0

(green) and r ≈ 2Rg,0 (purple) for ∼ 1000 configurations each.
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FIG. S8: Instantaneous values of radius of gyration of ring A plotted against the corresponding value for ring B from the
same configuration for the fully asymmetric case. The data are presented for two different mean ring-ring separations,

r ≈ 0 (green) and r ≈ 2Rg,0 (purple) for ∼ 1000 configurations each.
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V. PROLATENESS
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FIG. S9: Instantaneous values of prolateness of ring A plotted against the corresponding value for ring B from the same
configuration for the fully symmetric case. The data are presented for two different mean ring-ring separations, r ≈ 0

(green) and r ≈ 2Rg,0 (purple) for ∼ 1000 configurations each.

FIG. S10: Instantaneous values of prolatness of ring A plotted against the corresponding value for ring B from the same
configuration for the fully symmetric case with NA = NB = 100 and C∞(A) = C∞(B) = 1.0. The data are presented for

extra mean ring-ring separations, r/Rg, split into three panels for better visibility, for ∼ 1000 configurations each.
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FIG. S11: Instantaneous values of prolateness of ring A plotted against the corresponding value for ring B from the same
configuration for the asymmetric case. The data are presented for two different mean ring-ring separations, r ≈ 0 (green)

and r ≈ 2Rg,0 (purple) for ∼ 1000 configurations each.

C∞(A) = 1.0, C∞(B) = 1.0 C∞(A) = 1.0, C∞(B) = 9.4 C∞(A) = 1.0, C∞(B) = 12.9 C∞(A) = 1.0, C∞(B) = 15.4
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FIG. S12: Instantaneous values of prolateness of ring A plotted against the corresponding value for ring B from the same
configuration for the fully asymmetric case. The data are presented for two different mean ring-ring separations, r ≈ 0

(green) and r ≈ 2Rg,0 (purple) for ∼ 1000 configurations each.
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VI. THREADING PROBABILITIES & SEPARATION LENGTHS
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FIG. S13: Probability of ring i threading ring j as a function of ring-ring separation. For the fully symmetric case, we show
the probability averaged over both permutations (i → j, j → i) and the distance is normalized by the radius of gyration of

a single ring at infinite dilution. For the asymmetric cases, we show the probabilities for both possible permutation
respectively and a similar normalization of distance is applied, but using the average of the infinite-dilution radii of the rings

from Eq. 9 from the main text. The color identifies the system, whereas line style (solid and dashed) in the asymmetric
cases differentiates the permutation. The inset shows the probability of mutual threading at r ≈ 0 ring-ring separation.
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(a) fully symmetric, NA = NB = 100,
C∞(A) = C∞(B)
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(b) fully symmetric, NA = NB = 50,
C∞(A) = C∞(B)
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FIG. S14: Mean separation length as a function of ring-ring separation, shown for the fully symmetric case. The distance is
normalized by the radius of gyration of a single ring at infinite dilution. The inset shows the probability distributions of

threading depths at r ≈ 0.
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VII. THREADING ROLES
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FIG. S15: Probability density of radius of gyration of a single ring at infinite dilution, shown for N = 100, C∞ = 1.0 and
for N = 40, C∞ = 9.4 respectively. The vertical dashed lines denote the estimators of the mean of the distributions. The

insets highlight the integrals of the cost functions from Eq. 10 and Eq. 11 from the main text associated with the threading
permutations A → B and B → A.
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