
 1 

Supporting Information (SI) 
 

Polymer Sequence Design via Molecular Simulation-Based Active Learning 
 

Praneeth S Ramesh and Tarak K Patra* 
 

(*Corresponding Author, E-mail: tpatra@iitm.ac.in) 
 

Department of Chemical Engineering, Center for Atomistic Modeling and Materials Design 
and Center for Carbon Capture Utilization and Storage, Indian Institute of Technology 
Madras, Chennai, TN 600036, India 
 

 

1) Gaussian Process Regression 

 

A Gaussian Process (GP) is an extension of the multivariate Gaussian distribution to an infinite-

dimension stochastic process for which any finite combination of dimensions will be a 

Gaussian distribution. Just as a Gaussian distribution is a distribution over a random variable, 

completely specified by its mean and covariance, a GP is a distribution over functions1, 

completely specified by its mean function, m and covariance function, k:  

𝑓(𝑥)	~	𝐺𝑃	(𝑚(𝑥), 𝑘(𝑥! , 𝑥")) 

A GP is analogous to a function, but instead of returning a scalar f(x) for an arbitrary x, it 

returns the mean and variance of a normal distribution over the possible values of f at x. The 

Gaussian Process Regression (GPR) algorithm implements Gaussian processes for regression 

with the construct, 𝑌 = 𝑓(𝑋) + 	𝜀, wherein the unknown function f is assumed to follow a 

𝐺𝑃	(𝑚(𝑥), 𝑘(𝑥! , 𝑥")). The training set 𝐷#:	&		is constituted by the set of ordered pairs 

{𝑋#:	& , 𝑌#:	&}.	 wherein 𝑋#:	& = 	[𝑥#,			𝑥', … , 𝑥&]( denotes the copolymer sequences and 𝑌#:& =

	[𝑦#,			𝑦', … , 𝑦&]( 	denotes the corresponding radius of gyration  respectively, where t stands for 

the total number of sequences for which radius of gyration values have been computed from 

previous iterations. 𝜀	~	𝑁(0, 𝜎)'),	 stands for independently identically distributed Gaussian 

noise with mean zero and variance 𝜎)'. The objective of the GPR is to fit the training data 

𝐷#:	&	and to generate reasonable and meaningful predictions for other copolymer sequence data 

points for which the radius of gyration values are not yet known. For convenience, we assume 

that the prior mean function is the zero-function m(x) = 0. In the context of Gaussian processes, 

the covariance functions, 𝑘(𝑥! , 𝑥")2, which are termed as kernels, and they represent the 

“similarity” between pairs of data-points in the copolymer sequence space. Choosing the 
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appropriate kernel requires a rigorous analysis combining strategies such as hierarchical 

Bayesian model selection or/and cross-validation. Out of the many kernels that are popularly 

used, the radial basis function kernel and Matern kernel3 are chosen for this work. These kernels 

are stationary kernels, and are invariant to translations in the X-space as they depend only on 

the distance between two data points and not their absolute values. 

  

1) The radial basis function (RBF) kernel can be represented as 

𝑘	;𝑥!		, 	𝑥"	< = 𝑒𝑥𝑝 ?−
(‖𝑥 − 𝑥*‖')	'

2	𝑙' D	, 

 
where l is the characteristic length scale of the kernel and ‖𝑥 − 𝑥*‖' is the Euclidean distance 

measure or the L2 norm, which is the length of the line segment joining x and x’. 

 

2) Matern Kernel generalizes the popularly used radial basis function kernel by incorporating 

a parameter ν which controls the smoothness and is thus more flexible as it includes an 

additional free parameter in the model. In this work ν = 3/2 is considered, resulting in the 

following functional form of the Matern 3/2 kernel: 

𝑘	;𝑥!		, 	𝑥"	< = ?1 +	
√3	‖𝑥 − 𝑥*‖'

𝑙 D 𝑒𝑥𝑝 ?−
√3	‖𝑥 − 𝑥*‖'

𝑙 D 

l is the characteristic length scale and ‖𝑥 − 𝑥*‖' is the Euclidean distance measure or the L2 

norm. 

Thus, the kernel matrix K is given by:   

𝑲 =	I
𝑘(𝑥#, 𝑥#)	 ⋯ 𝑘(𝑥#, 𝑥&)

⋮ ⋱ ⋮
𝑘(𝑥& , 𝑥#)	 ⋯ 𝑘(𝑥& , 𝑥&)

M 

With this framework, it would seem that, for either of the two kernels, RBF or Matern, 

covariance values represented by the diagonal elements are 1, since each data point is perfectly 

correlated with itself. However, such a scenario is possible only in a noise-free environment3, 

and the very modeling of the regression problem 𝑌 = 𝑓(𝑋) + 	𝜀 with the inclusion of Gaussian 

Noise 𝜀	~	𝑁(0, 𝜎)') is to facilitate smoothing over noisy data. Accordingly, in practical 

implementation, an additional term, 𝜎)' is added to all the diagonal elements, resulting in the 

following form of Kernel matrix. Thus, the training set 𝑌#:& which is a collection of functions 

[𝑓(𝑥#), 𝑓(𝑥'), … , 𝑓(𝑥&)] follows multivariate normal distribution	𝑁(0, 𝐾′) 

𝑲* =	 I
𝑘(𝑥#, 𝑥#) + 𝜎)' ⋯ 𝑘(𝑥#, 𝑥&)

⋮ ⋱ ⋮
𝑘(𝑥& , 𝑥#) ⋯ 𝑘(𝑥& , 𝑥&) +	𝜎)'

M	 
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𝑲* = 	𝐾 + 𝜎)'	𝐼	 

Moreover, the addition of 𝜎)' to the diagonal ensures that the calculated values form a positive 

definite matrix during the process of model fitting and thus prevents a potential numerical issue. 

 

With the current information on the Rg values for the t sequences, GPR helps in predicting the 

Rg values for sequences that are not part of 𝐷#:&. To predict the function values 𝑓∗ at a test 

location 𝑥&,-&, the joint distribution of 𝑌#:& =	 [𝑦#,			𝑦', … , 𝑦&](and 𝑓∗ is constructed. By the 

properties of Gaussian processes, 𝑌#:& and 𝑓∗ are jointly Gaussian: 

 

Q
𝑦#:&
𝑓∗ R ~𝑁 ?0, S

𝑲 +	𝜎)'	𝐼	 𝑲∗
𝑲∗
𝑻 𝒌(𝒙𝒕𝒆𝒔𝒕, 𝒙𝒕𝒆𝒔𝒕) 	+	𝜎)'

VD 

where 

𝑲 =	I
𝑘(𝑥#, 𝑥#)	 ⋯ 𝑘(𝑥#, 𝑥&)

⋮ ⋱ ⋮
𝑘(𝑥& , 𝑥#)	 ⋯ 𝑘(𝑥& , 𝑥&)

M 

I is an identity matrix of size 𝑛	 × 	𝑛 

𝑲∗ = [𝑘(𝑥&,-& , 𝑥#), 𝑘(𝑥&,-& , 𝑥')	, … , 𝑘(𝑥&,-& , 𝑥&)]( 

 

After performing certain linear algebraic simplifications on the joint distribution, the 

predictions for the posterior distribution of the radius of gyration at 𝑥&,-&	can be obtained. The 

predicted posterior distribution follows a normal distribution with posterior mean	�̂� and 

posterior variance ∑\ . 

𝑃(𝑓∗|𝐷#:& , 𝑥&,-&)~	𝑁(�̂�, ∑\) 
 
wherein: 
 

�̂� = 𝐾∗([𝐾 + 𝜎)'	𝐼	]2#	𝑦#:& 
 

∑\ = 𝑘(𝑥&,-& , 𝑥&,-&) + 𝜎)' − 𝐾∗
((𝐾 + 𝜎)'	𝐼	)–#𝐾∗ 

 
The posterior mean and variance evaluated at any point represent the GPR model’s prediction 

and uncertainty measure respectively. 

 

Implementation: 
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The implementation of GPR is done using the gaussian_process.GaussianProcessRegressor 

function of the sklearn library, using the Matern Kernel, and the iterative retraining and 

predictions are done using the models.BayesianOptimizer function of the modAL library.  

 

Hyperparameters: 

GPR is a non-parametric method in the sense that the regression function f has no explicit 

parametric form because GP represents a function (i.e. an infinite dimensional vector). As the 

number of data points increases, so does the number of model 'parameters'. Unlike a parametric 

model, where the number of parameters remains fixed with respect to the size of the data, the 

number of parameters grows with the number of data points in nonparametric models. 

Although GPR models are considered to be non-parametric, their hyperparameters (parameters 

that cannot be learnt during the training task, but would have to be specified a priori) 

significantly influence their predictive capabilities. 

The hyperparameters for the GPR are 

1. The characteristic length scale of the kernel, which is denoted as l, defines the length 

scale of the respective feature dimension, and  

2. The Gaussian Noise σnoise, which is added to the diagonal of the kernel matrix. 

 

Hyperparameter Tuning: 

Hyperparameter tuning comprises a set of strategies to navigate the space of hyperparameters 

and pinpoint the parameter combination that brings about the best performance of the machine 

learning model. Cross-validation also known as rotation estimation or out-of-sample testing is 

a resampling procedure used popularly by Machine Learning practitioners for hyperparameter 

tuning. However, the hyperparameter tuning in Gaussian Process Regression can be done 

differently, and in fact faster than the cross-validation approach, by performing gradient 

descent to maximize the negative log marginal likelihood with respect to the hyperparameters. 

As the log marginal likelihood might have multiple local optima, the gradient descent optimizer 

is run repeatedly for over 50 different initializations.  

 

2) Support Vector Regression (Linear Kernel) 

 

SVR is a regression version of support vector machines that transforms data points to higher-

dimensional feature space and constructs a nonlinear regression function based on a kernel 
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function. A regression function of the form 𝑓(𝑥) = 	𝑤(𝜙(𝑥) + 𝑏 is modelled, wherein x is 

mapped onto a higher-dimensional space by a function	𝜙(𝑥), while w and b denote the 

weight vector and the bias parameter respectively. 

 

The first step involves fitting the SVR model on the training data. If we consider the training 

set 𝐷#:	&		to be constituted by the set of ordered pairs {𝑋#:	&	, 𝑌#:	&}.	 wherein 𝑋#:	& denotes the 

copolymer sequences and 𝑌#:&	denotes the corresponding radius of gyration  respectively, the 

ε-SVR algorithm tries to find a function f(x) that has at most ε deviation from the computed 

target property values 𝑌#:	&, while simultaneously being as flat as possible. Based on the 

derivative of f(x) with respect to x, #
'
𝑤(𝑤 or #

'
‖𝑤‖' should be as minimal as possible to ensure 

flatness. ||w||2 is the square of the magnitude of the normal vector to the surface that is being 

approximated, and is also the L2 norm of w. The magnitude of w provides a control over the 

flatness of the solution. This optimization problem is defined along with a constraint that the 

function f(x) should be restricted within ε units of the true values, 𝑦!.4 
4!)!5!6,
7,			9 		#

'
𝑤(𝑤  

Subject to 𝑤(𝜙(𝑥!) + 𝑏 − 	𝜖 ≤ 𝑦!		 ≤ 𝑤(𝜙(𝑥!) + 𝑏 + 	𝜖 for 𝑖 = 1, 2, … . , 𝑡 

 

However, as much as it is desired to find an optimal function f which approximates the target 

property values 𝑦! within 𝜖 units of precision, in practice, it is difficult to strictly restrict the 

deviations between predicted and true values within epsilon for all the data points in the training 

set, and this might result in the optimization problem becoming infeasible.  

 

A Soft-Margin approach accounts for the possibility that these deviations are potentially likely, 

and attempts to minimize them as much as possible. The 𝜖-insensitive loss function (|ξ|𝜖) 

penalizes predictions that are farther than 𝜖 while ignoring errors lesser than 𝜖. 

(|𝜉|;)! = max	{0, |𝑦! − (𝑤(𝜙(𝑥!) + 𝑏)| − 	𝜖} 

(|𝜉|;)! = 0																																																						𝑖𝑓	|𝑦! − (𝑤(𝜙(𝑥!) + 𝑏)| 	≤ 	𝜖		 

(|𝜉|;)! = |𝑦! − (𝑤(𝜙(𝑥!) + 𝑏)| − 	𝜖							𝑖𝑓	|𝑦! − (𝑤(𝜙(𝑥!) + 𝑏)| > 	𝜖		 

 

For the sake of ease in linear algebraic simplifications, rather than working with the construct 

of |𝜉|;, two non-negative slack variables ξ and ξ* are introduced for each data point. These 
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deviations are added to the objective function prefixed by a hyperparameter C which 

determines the trade-off between control over flatness and tolerance beyond 𝜖.   

 

This results in the optimization problem being reframed as: 

Minimize 4!)!5!6,7,9,<,<∗	 	
#
'
𝑤(𝑤	 + 𝐶	 ∑ (𝜉! + 𝜉!∗)	)

!=#  

Subject to	l𝑤
(𝜙(𝑥!) + 𝑏 − (𝜖 + 𝜉!∗) ≤ 	𝑦!		 ≤ 𝑤(𝜙(𝑥!) + 𝑏 + (𝜖 + 𝜉!)

𝜉! , 𝜉!∗ ≥ 0,				𝑖 = 1, 2, … . , 𝑡   

 

In the expression, 𝑓(𝑥) = 	𝑤(𝜙(𝑥) + 𝑏, 𝜙(𝑥) is generally represented in an implicit form 

using a kernel function 𝑘(𝑥, 𝑥!) such that 𝑘(𝑥, 𝑥!) = 	𝜙(𝑥)𝑇	𝜙(𝑥′). Assuming the bias 

function as zero for the sake of simplicity, and after solving the optimization problem 

with a Lagrange reformulation, the expression for the SVR functional form at any point 𝑥&,-& 

where we would wish to obtain the prediction value, is given by 

𝑓?@,A(𝑥&,-&	) = 	n𝛼!𝑘(𝑥&,-& , 𝑥!)	
&

!=#

 

    where i = 1, 2, …, t 

where αi are the weights that are fit to the training data and 𝑘(𝑥&,-& , 𝑥!) is be the kernel function 

that computes the similarity between a pair of points		𝑥&,-&	and 𝑥!. The summation is performed 

over the entire training set of size t. 

 
 
Kernels: 
Of the many kernels that could be used, linear kernel and radial basis function kernel are 

employed in this work. 

 
1) The linear kernel refers to 𝑘(𝑥, 𝑥*) 	= 	 〈𝑥, 𝑥′〉, i.e., the dot product of x and x’. 
 
2) The radial basis function kernel has the functional form,  

𝑘	(𝑥, 𝑥*) = 𝑒𝑥𝑝B2CDE2E
"D#

#F 

where ‖𝑥 − 𝑥*‖' is the Euclidean distance measure or the L2 norm, which is the length of the 

line segment joining x and x’ and 𝛾 codifies the inverse of the variance of the radial basis 

function. 

 
As such, these methods do not estimate uncertainties, and thus a nonparametric bootstrap 

sampling with replacement is implemented to generate multiple subsets of the training dataset 
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to form a distribution. The empirical distribution obtained with bootstrapping mimics the 

statistics associated with the original population. Thus, an ensemble of 10 models of the same 

ML method trained on different subsets of the training set, aids us in obtaining robust 

predictions with measures of uncertainties. The uncertainty in these two methods is the 

standard deviation of the prediction from the 10 models5. 

 
 
Hyperparameters: 

• Epsilon (𝜖) determines the width of the 𝜖-insensitive zone, or in other words the margin 

of tolerance for deviations between predicted and true values. A smaller value indicates 

a lower tolerance for deviations, while a larger value indicates greater tolerance for 

deviations. 

• C is a regularization hyperparameter that can tune the relative importance of 

minimizing ||w||2 vis-à-vis minimizing the slack variables (ξ, ξ*) 

• Gamma (𝛾), in the case of Radial Basis Kernel codifies the inverse of the variance of 

the radial basis function, and can be seen as a measure of the spread of the kernel. When 

gamma is very small, the model is too constrained, and cannot capture the complexity 

or shape of the data, while very high gamma values result in model overfitting and non-

generalizability to newer data points. 

 
Tuning Hyperparameters: 
 

Compared to popularly used forms of automated hyper-parameter tuning such as grid search 

which involves brute-force exploration of a pre-defined set of hyperparameter combinations or 

random search which involves random searching of the hyperparameter space iteratively, the 

Bayesian Optimization approach views the hyperparameter tuning as a classic complex 

optimization problem. The input variables are the hyperparameters and the objective score 

function is defined by the average cross-validation error which is intended to be optimized to 

as low a value as possible. The training dataset is split into a training subset and validation 

subset multiple times, by considering different subsets, and the errors on the validation subsets 

are averaged out so as to compute the average cross-validation error. A search space of the 

hyperparameters needs to be defined by specifying the lower bound and upper bound of the 

range from which each of the hyperparameters can be chosen from. The Bayesian Optimizer 

algorithm would navigate the search space following an iterative approach, and converge to 

optimal hyperparameters, much the same way as how the outer Bayesian Optimization 
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framework is intended to converge toward identifying optimal sequences. In this work, a log 

scale from 10-6 to 1.0 is defined as the range for each of the numeric hyperparameters, Epsilon 

(𝜖), C and Gamma (𝛾) (in the case of RBF kernel). This in turn defines the two-dimensional 

(for the Linear SVR kernel sub-case) or the three-dimensional (for the RBF kernel sub-case) 

hyperparameter search space. Owing to differences in the randomly chosen initial point, the 

results of convergence might vary across multiple runs, and it is a wise practice to consider 

only the solutions that lie within the search space and not on the periphery/boundary of the 

search space.  

 

Implementation: 

 

The implementation of SVR was done using the svm.SVR function of sklearn library, and the 

implementation of bootstrapping using ensemble model was done using the 

ensemble.BaggingRegressor function of the sklearn library. The hyperparameter tuning was 

done using the BayesSearchCV function of the Scikit-Optimize Library 

 

3) Kernel Ridge Regression 

 

KRR combines the power of the kernel trick with the simplicity of standard least-squares 

regression. While the form of the model learnt by KRR and the notion of using kernel functions 

are similar to that of SVR, KRR does not ignore errors smaller than ε, and the squared error is 

used instead of the absolute error.6  

 

If we consider the training set 𝐷#:	&		with ordered pairs {𝑋#:	&	, 𝑌#:	&},	with 𝑋#:	& being the 

copolymer sequences and 𝑌#:&	being the corresponding radii of gyration, the expression for the 

Kernel Ridge Regression functional form at any point 𝑥&,-& where we would wish to obtain the 

prediction value, is given by 

𝑓?@,A(𝑥&,-&	) = 	n𝛼!𝑘(𝑥&,-& , 𝑥!)	
&

!=#

 

    where i = 1, 2, …, t 

where αi are the weights and 𝑘(𝑥! , 𝑥&,-&) to be the kernel function that computes the similarity 

between a pair of points		𝑥! 	and 𝑥&,-&. The summation is performed over the entire training set 

of size t. 
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The optimized values for the weights αi are obtained through the minimization of the following 

cost function by running a summation over the entire training set7. The following expression is 

very similar to the cost function that is minimized in order to estimate the parameters of a 

standard linear least-squares regression model.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝛼#, 𝛼', . . , 𝛼&

	n(𝑓?@,A(𝑥!) −	𝑦!)'	
&

!=#

+ 	𝜆	𝛼(𝛼		 

where the hyperparameter λ controls the strength of the regularization  

The solution to this is given by 

𝛼 = (𝐾 + 𝜆	𝐼)	2#	𝑌 

where 𝛼 is the vector of all 𝛼! values,	[𝛼#,			𝛼', … , 𝛼&](, I is the t × t identity matrix, K is the 

kernel matrix constituted by elements Kij = k (xi , xj), i and j spanning the entire training set, 

and Y is the set of computed target property values 𝑌#:& =	 [𝑦#,			𝑦', … , 𝑦&]( 

 

For the KRR algorithm, it is possible to get a closed form8 exact solution for α, which is why 

fitting a KRR can be done in closed-form and is typically faster compared to SVR for medium-

sized datasets.  

 

Kernels: 

While there are numerous kernels such as Polynomial, Exponential chi2 and sigmoid kernels 

that could be potentially used, in this work radial basis function and laplacian kernel are used. 

1) The Radial Basis function has the functional form: 𝑘	(𝑥, 𝑥*) = 𝑒𝑥𝑝G2CBDE2E
"D#F

#
H, wherein  

‖𝑥 − 𝑥*‖' is the Euclidean distance measure or the L2 norm, which is the length of the line 

segment joining 𝑥 and 𝑥* and 𝛾 is a measure of the spread of the kernel 

2) The Laplacian function has the functional form 𝑘	(𝑥, 𝑥*) = 𝑒𝑥𝑝B2CDE2E
"D$F, wherein 

‖𝑥 − 𝑥*‖# stands for the Manhattan distance or L1 norm which is the distance between x and 

𝑥*  measured only along perpendicular axes and 𝛾 is a measure of the spread of the kernel 

  

Hyperparameters: 

• Lambda (𝜆) is used to codify the extent of regularization. Larger values specify stronger 

regularization, and result in lower variance, thereby avoiding overfitting the function to the 

training data. 
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• Gamma (𝛾) is the measure of the spread of the kernel, and has a similar implication as it 

has for SVR.  

 

Tuning Hyperparameters: 
 
Like in SVR, the hyperparameter tuning is done by a Bayesian approach. In this work, a log 

scale from 10-6 to 1.0 is defined as the range for each of the numeric hyperparameters Lambda 

(𝜆) and Gamma (𝛾) and this in turn defines the two-dimensional search space that would be 

searched by the Bayesian Optimizer. The Bayesian optimizer would navigate the search space 

following an iterative approach to zero down on an optimal set of hyperparameters. 

 

Implementation: 

The implementation of KRR was done using the kernel_ridge.KernelRidge function of sklearn 

library, and the implementation of bootstrapping using the ensemble model was done using the 

ensemble.BaggingRegressor function of the sklearn library. The hyperparameter tuning was 

done using the BayesSearchCV function of the Scikit-Optimize Library 

 

Search Space Definition: 
 
During the implementation of the iterative active learning framework, running the surrogate 

model to make predictions over the entire space of copolymer sequences poses a practical 

challenge.  For the first problem statement in which there is no constraint on the number of As 

and Bs, the total number of possible copolymer sequences is #
'
× 2#II = 299 (halving is done in 

order to eliminate double-counting of sequences which are exact reverse of each other). At 

each iteration, a small (relatively small) search space is defined by enumerating the possible 

sequences that are sequentially proximate to the ones in the training set accumulated until that 

particular iteration. For every copolymer sequence in the training set, the exhaustive list of 

copolymer sequences that differ in the monomeric entity at exactly one position (i.e. one 

position of A replaced by B, or one position of B replaced by A) is considered to populate the 

search space. This is notionally an equivalent of performing a single mutation operation in the 

parlance of Genetic Algorithm9. The best 32 sequences from this search space are 

recommended for computation via MD simulation, as selected by a query strategy. This 

approach of single-mutation enumerated search space is implemented while experimenting 
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with different surrogate models, kernels and query strategies, for all the 30 optimization 

frameworks. 

 

In addition to this approach, two alternative strategies are attempted as an illustration for the 

first problem statement, for a specific surrogate model. With these alternative approaches, the 

premise is to push the boundaries of the optimizer beyond working with a restricted 

sequentially proximate single-mutation enumerated search space, towards search spaces that 

are sequentially different to a considerable extent. While numerous such alternative strategies 

could potentially be defined, the following two have been taken up as illustrative examples in 

this work.  

 

Alt. Strategy 1: 

At each iteration, the search space (S) is defined by a combination of two individual search 

spaces: 

S1 - The exhaustive set of sequences obtained by mutating (replacement of A by B or B by A) 

at one position in the chain 

S2 - The exhaustive set of sequences obtained by mutating at four positions in the chain 

𝑆 = 𝑆# 	∪ 𝑆' 

By implementing the query strategy on each of these search spaces, 16 candidate sequences 

from S1 and 16 candidate sequences S2 are selected to add up to a sum of total of 32 candidate 

sequences in every iteration. 

 

Alt. Strategy 2: 

At each iteration, the search space (S) is defined by a combination of three individual search 

spaces: 

S1 - The exhaustive set of sequences obtained by mutating (replacement of A by B or B by A) 

at one position in the chain 

S2 - The exhaustive set of sequences obtained by mutating at four positions in the chain 

S3 - The exhaustive set of sequences obtained by mutating at ten positions in the chain 

𝑆 = 𝑆# 	∪ 𝑆' ∪ 𝑆J 

In each of these three search spaces, the query strategy is implemented to recommend the best 

sequences for the computationally expensive MD simulation. 12 candidate sequences from S1 

and 10 candidate sequences from each of S2 and S3 are selected to add up to a sum total of 32 

candidate sequences in every iteration. 
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For the second problem statement in which A: B is constrained to be in a 50:50 ratio, the total 

number of possible sequences is #
'
× #II!

LI!	LI!
. The application of mutations would disturb the A: 

B ratio, and hence, the search space at each iterative step is defined by generating an exhaustive 

list of copolymer sequences that are obtained by swapping one pair of A and B for every 

sequence in the training set accumulated until that particular iteration. While certain alternative 

strategies that have been attempted for the first problem statement, no such similar attempts of 

defining search spaces by enumerating sequences obtained by swapping 4 A-B pairs or 

swapping 10 A-B pairs have been explored, on account of rising computational costs for 

swapping vis-à-vis mutations. 

 

In all of these approaches, the basic premise is that as newer candidate sequences are added 

into the training set, greater number of sequences would be defined as part of the search space. 

Thus, a framework is developed to define a candidate search space, the size of which becomes 

progressively larger at each iterative step. 

 

Query Strategies: 
 
Once the predictions and uncertainties of the Rg values are obtained for the sequences 

enumerated in the search space at every iterative step, there are different strategies that could 

be used to shortlist the sequences for which the computationally expensive molecular 

simulations are to be done. The technique/approach of recommending the best sequences is 

known under various names such as query strategy / acquisition function / utility function / 

selector15. 

 

Purely Exploitative and Purely Explorative Strategies: 

Fundamentally, the two ends of the spectrum are Exploitation – recommending candidates 

which have high predictions of the target property and Exploration – recommending candidates 

that have high uncertainties. With the exploitation approach, the motive is to expand the 

training set with candidates that are predicted to have high values of the target property with a 

reasonably high degree of confidence (low estimates of uncertainty). The motive of the 

exploration approach is to extend the domain of applicability of the model and to improve the 
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model by using the predicted uncertainties to study regions of sequence space wherein the 

model predictions have a high estimates of uncertainty or in other words a low degree of 

confidence10. The former approach aims at sampling optimal candidates in the next iteration 

while the latter approach aims at improving the understanding of the universal sequence- Rg 

correlation and does not have an explicit motive of optimization.  The purely exploitative 

approach has been reported to be a “greedy” approach11, and is associated with local optima 

traps resulting in suboptimal solutions. On the other hand,  the purely explorative approach has 

been reported to have poor convergence towards optimality. Certain query strategies that have 

their roots in information theory, have successfully demonstrated the ability to escape local 

optima traps and to improve the convergence towards global optima, and thus efficiently 

balance the trade-off between exploitation and exploration. 

 

Expected Improvement & Probability of Improvement: 

 
The Query Strategy Maximization of Expected Improvement (Max EI)12 recommends 

candidate sequences that have the scope to result in the maximum improvement in y (the Radius 

of Gyration) over the current best value. With t computed values of Radius of gyration, let 𝜇∗ 

be the maximum value that has been observed so far. 

𝜇∗ =
𝑚𝑎𝑥

𝑖 = 1, . ., 𝑡 	𝑦! 

Suppose, 𝑥&,-& is an arbitrary point that is considered as a potential candidate for the 

computation of radius of gyration value. After the computation, the best observed value would 

be max	(𝑦&,-& , 𝜇∗). The difference between these values is the improvement on account of 

additional computation, and is given by  max(𝑦&,-& , 𝜇∗) −𝜇∗ = max(𝑦&,-& − 𝜇∗	, 0). 

The motive is to choose an 𝑥&,-& such that the improvement is as large as possible. Rather than 

attempting to compute the actual improvement, the posterior probability distribution of f(x) can 

be used to define the expectation of the improvement for each 𝑥&,-&, The expectation of the 

improvement, also termed as expected improvement EI(x) is the expectation of this 

improvement conditioned on the dataset 𝐷#:&.  

EI(𝑥&,-&) = E ( I (𝑥&,-&|𝐷#:&) )  = E [max(𝑓(𝑥&,-&) − 𝜇∗	, 0)|	𝐷#:&] 

 

This expression can be computed explicitly in terms of the normal probability density function 

(pdf ) 𝜙(. ) and normal cumulative distribution function cdf Φ(. ) as 
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𝐸𝐼(𝑥&,-&) = 	 (𝜇(𝑥&,-&) −	𝜇∗	)	Φ z
M(E%&'%)2M∗	
P(E%&'%)

{ + 𝜎(𝑥&,-&)	𝜙 z
M(E%&'%)2M∗	
P(E%&'%)

{	  

where 𝜇(𝑥&,-&) and 𝜎(𝑥&,-&) are the predicted estimates of the mean and variance at point 𝑥&,-&. 

This can be written in a concise form as 

𝐸𝐼(𝑥&,-&) = 	 (𝜎(𝑥&,-&))	[Φ(𝑧) + 𝑧	𝜙(𝑧)	]  

where 𝑧 = 	 M(E%&'%)2M
∗	

P(E%&'%)
 

 

In the limit of minimal uncertainty 𝜎(𝑥&,-&) → 0, candidates will be selected with a 𝜇(𝑥&,-&) 

greater than the best measured so far (𝜇∗), by an exploitative approach trusting the predictions 

of the surrogate model. Similarly, in the other limit	𝜎(𝑥&,-&) → ∞, the candidates with the 

largest uncertainty would be a selected by following an explorative approach. For values 

between the two extremes, the trade-off between the two would be balanced by the Expected 

Improvement query strategy, exploring the sequence space thereby avoiding local minima and 

exploiting the space thereby narrowing on the optimal candidate sequences. 

 

Even with the formulation of the Expected Improvement function, addition of margins13 is 

employed in order to allow for finer control in balancing exploration and exploitation. A margin 

specifies a minimum amount of improvement over the current best point, and is integrated into 

the equation by replacing the term 𝑧 = 	 M(E%&'%)2M
∗	

P(E%&'%)
with 𝑧 = 	 M(E%&'%)2(M

∗Q;)	
P(E%&'%)

 where 𝜖 ≥ 0 

represents the degree of exploration. The higher the epsilon, more the exploration. This is 

because increasing ϵ results in querying locations with a larger sigma σ, moving towards 

exploration rather than exploitation13.  

 
The query strategy Maximization of Probability of Improvement (Max. PI) 12 recommends 

candidates for Rg computation, by considering the ones which have the highest probability of 

improvement over the current maximum value 𝜇∗. As in Expected improvement, the addition 

of margins is incorporated by considering 𝜖 ≥ 0 which represents the degree of exploration. 

𝑃𝐼(𝑥&,-&) = 	𝑃;𝐼(𝑥&,-&)< = 	𝑃(𝑦&,-& ≥	𝜇∗ + 	𝜖	) 

Statistically, PI represents the upper-tail probability of the surrogate model. 

𝑃;𝑓(𝑥&,-&)< ≥ 𝜇∗ + 	𝜖			

⇒ 𝑃𝐼(𝑥&,-&) = 	Φ	(𝑧) 

where 𝑧 = 	 M(E%&'%)2(M
∗Q;)	

P(E%&'%)
 and Φ(𝑧) stands for the cumulative distribution function. 
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In this work, a value of 0.01 was taken as ϵ for both query strategies. In either of the query 

strategy, the top 32 candidate sequences that are found to have the highest EI values / highest 

PI values are recommended for computation of Rg through Molecular Simulation. 

 
Random Selection: 

Amongst the enumerated sequences in the search space at each iteration, 32 candidate 

sequences are randomly chosen, in an arbitrary manner with absolutely no preferences or biases 

in the selection. 
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