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S1 Experiments

S1.1 Fabrication of the microfluidic chip

The microfluidic chips are fabricated using standard photolithography and Deep Reactive Ion Etching (DRIE)
techniques at the MESA+ Nanolab/clean room at the University of Twente. The process can be divided into
three steps, namely etching of the pore network into the silicon (Si) wafer, etching the access holes through
the Si wafer and finally bonding the finished Si wafer to a Mempax (Schott) wafer. The photolithography
is done twice using two masks to make the pore network (leaving the pillars standing) and the access holes
respectively. Before starting the photolithography, the Si wafers are thermally oxidized to get an SiO2 layer
of 1.7 µm, i.e. a hard mask. This is done by wet oxidation of an Si wafer at a temperature of 1150◦C for 6
hours. After coating the Si wafer with a photoresist layer, the first mask is aligned with the wafer and the
pillar pattern is transferred to the layer by exposure to UV light and resist development. The next step is to
etch the protection SiO2 layer and then the pillar pattern into the Si wafer (to a depth of 20 µm) using the
DRIE technique (the Bosch process recipe is used). Then the photoresist layer is stripped using an oxygen
plasma. A dicing foil is applied to the top of the wafer to protect it during powder-blasting. On the back
a powderblast foil is applied (Harke I-HE dry-resist) and the access holes are defined via photolithography
using the second mask. The access holes are etched using powder blasting. After powder blasting the foils
are removed and the wafer is ultrasonically cleaned to remove any residual powder. Next the wafer is cleaned
using piranha (H2SO4:H2O2, 3:1 vol.%) to remove any residual foil and rinsed with H2O. The remaining
SiO2 layer is removed by dipping the wafer in buffered HF solution (BHF, 1:7) for 25 minutes and dried.
The finished Si wafer is anodically bonded to the Mempax (Schott) wafer and diced into individual chips.

S1.2 Inspection of the pillar arrays

Zoomed-in images enabling inspection of individual pillars are provided in Figs S1 and S2. The side views
illustrate the corrugated and slightly tapered structure of the pillars, while they appear nicely circular in
the top view. Small residual ridges remain when the distances between the pillars are small relative to their
diameters. The inlet/outlet of the microfluidic chips are shown in Fig. S3.

Figure S1: Zoomed-in SEM images showing top-views of the pillars at porosities of (a) 0.65 and (b) 0.87.
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Figure S2: Zoomed-in SEM images showing side-views of the pillars at porosities of (a) 0.55, (b) 0.6, (c) 0.7
and (d) 0.85.
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Figure S3: Side-view SEM images showing the inlet/outlet of the microfluidic chips with porosities of (a)
0.55 and (b) 0.85.
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S1.3 Permeability measurements

Figure S4: Water and hexadecane fluxes plotted against driving pressure for porosities of (a) 0.58, (b) 0.65,
(c) 0.73 and (d) 0.87. The lines are linear fits whose slopes, by Darcy’s law, yield the effective permeabilities
collected in Table 1.
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S2 MDPD simulations

S2.1 Simulations in 2D

Figure S5: Top view of the simulation set-up for fluid (light blue) flowing through a disordered array of
pillars (grey) in MDPD simulations, at a porosity of 55%. Periodic boundary conditions apply in the x
and y directions. The length and width of the pillared region match the box dimensions of the Monte
Carlo simulation that generated the pillar configuration. All fluid particles in the driving region of length
Ld (yellow) experience a body force fb in the x direction (yellow arrows). Consequently, the fluid outside
this region experiences a pressure-driven flow. The measurement region of length Lm is separated from the
driving region by the in-flow and out-flow regions of lengths Li and Lo, respectively.
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S2.1.1 Common parameters

Lengths that are common to all simulations, in 2D and 3D, are tabulated in Table S1; their definitions are
illustrated in Figs S5 and S10. The diameters of the pillars are fixed at d = 5σ in all simulations.

Table S1: Lengths of regions common to 2D and 3D simulations.

length start end definition

Ld 0.0σ 5.0σ length of driving region

Li 5.0σ 0.2Lx length of in-flow region

Lm 0.2Lx 0.8Lx length of measurement region

Lo 0.8Lx 1.0Lx length of out-flow region

In the next sections we tabulate the parameters and normalized permeabilities of all 2D systems simulated
in this study. The various parameters listed in the ensuing tables are described in Table S2.

Table S2: Parameter definitions for 2D simulations.

parameters definition

ε porosity

Npil number of pillars

Lx box length in x direction

Ly box length in y direction

L|| length of pillared region

Npart total number of particles

κp/d
2 normalized permeability
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S2.1.2 Square lattices in 2D

The parameters for 2D simulations of flow through pillars arranged on square lattices and square lattices
rotated over 45◦ are tabulated in Tables S3 and S4. The calculated permeabilities in the last column of
both tables denote averages over simulations with body forces of fb = 0.1, 0.2 and 0.3 ϵ/σ. All permeability
values reported here and henceforth, are accurate to within 10% of the mean values.

Table S3: Simulation parameters of square lattices in 2D.

ε Npil Lx [σ] Ly [σ] L|| [σ] Npart κp/d
2

0.50 100 146 31.33 125.33 27,497 0.004

0.55 100 153 33.03 132.11 30,357 0.006

0.60 100 161 35.03 140.12 33,896 0.01

0.65 100 170 37.45 149.80 38,260 0.02

0.70 100 182 40.45 161.80 44,258 0.03

0.75 100 198 44.31 177.25 52,739 0.05

0.80 100 219 49.54 198.17 65,212 0.09

0.85 75 192 57.21 171.62 66,012 0.2

0.90 75 231 70.06 210.19 96,814 0.3

0.95 50 219 99.08 198.17 130,389 1.0

Table S4: Simulation parameters of rotated square lattices in 2D.

ε Npil Lx [σ] Ly [σ] L|| [σ] Npart κp/d
2

0.50 100 105 44.31 88.62 27,916 0.004

0.55 100 109 46.71 93.42 30,547 0.007

0.60 100 115 49.54 99.08 34,184 0.01

0.65 100 121 52.96 105.92 38,451 0.02

0.70 100 129 57.21 114.41 44,277 0.03

0.75 100 140 62.67 125.33 52,639 0.05

0.80 100 154 70.06 140.12 64,738 0.08

0.85 100 174 80.90 161.80 84,461 0.2

0.90 100 209 99.08 198.17 124,250 0.3

0.95 64 230 112.10 224.20 155,370 1.0
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The permeabilities listed in Tables S3 and S4 are compared against several theories in Fig. 7 and against
a more extensive set of theories in Fig. S6. These theories are detailed in Section S3.1. Note that the rotation
of a square lattice of cylindrical pillars over 45◦ does not affect its permeability.1,2

0.6 0.8 1.0
ε

10−3

10−2

10−1

100

κ
p
/d

2

DT

BA-1, K

Hs

SATW

Hp

G

BA-2

LY

SK

TB

MDPD

Figure S6: Permeabilities for transverse flow through square arrays of circular pillars, plotted against porosity.
The markers show results from 2D MDPD simulations. The lines represent theoretical expressions by various
authors, as indicated in the legend: Drummond and Tahir1 (DT), Brushke and Advani3 (BA, with BA-1
denoting lubrication theory and BA-2 the cell-configuration method), Kuwabara4 (K), Hasimoto5 (Hs), two
expressions by Sangani and Acrivos6 merged into one by Tsay and Weinbaum7 (SATW), Happel8 (Hp),
Gebart9 (G), Lee and Yang10 (LY), Sahraoui and Kaviany11 (SK) and Tamayol and Bahrami12 (TB). All
these expressions for the permeability can be found in Table S13. The lines in black and grey represent
theories of the form κp/d

2 = (32ϕ)
−1

[− lnϕ+ f(ϕ)], where ϕ = 1 − ε is the solid volume fraction and f
typically is a polynomial starting with the constant −3/2.
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S2.1.3 Hexagonal lattices in 2D

The parameters for 2D simulations of flow through cylindrical pillars arranged on hexagonal lattices are
tabulated in Tables S5. The permeabilities are plotted in Fig. S7, along with theoretical predictions detailed
in Section S3.1.

Table S5: Simulation parameters of hexagonal lattices in 2D.

ε Npil Lx [σ] Ly [σ] L|| [σ] Npart κp/d
2

0.50 120 98 58.32 80.81 34,355 0.006

0.55 120 102 61.47 85.18 37,701 0.008

0.60 120 107 65.20 90.34 41,929 0.01

0.65 120 113 69.70 96.58 47,337 0.02

0.70 120 120 75.29 104.32 54,290 0.03

0.75 120 130 82.47 114.28 64,429 0.05

0.80 120 143 92.21 127.77 79,213 0.08

0.85 120 162 106.47 147.53 103,625 0.2

0.90 120 194 130.40 180.69 152,010 0.3
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Figure S7: Permeabilities for transverse flow through hexagonal arrays of circular pillars, plotted against
porosity. Results from 2D MDPD simulations (markers) are in good agreement with theories (lines) by
Drummond and Tahir1 (DT), Gebart9(G), Sangani and Acrivos6 (SA) and Tamayol and Bahrami12 (TB).
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S2.1.4 Irregular distributions in 2D

Table S6 lists the parameters for 2D simulations of cylindrical pillars positioned in irregular arrays. At each
porosity, a set of 25 uncorrelated unit cells was generated by MC; each system contained two back-to-back
copies of a unit cell. The driving force was fixed at fb = 0.3ϵ/σ. The dimensionless permeabilities in the
last column denote averages over these sets. A plot of these permeabilities is shown in Fig. S8, along with
the calculations by Chen and Papathanasiou13 and Sangani and Yao.14 We also observe agreement with
the theory by Spielman and Goren15 for ε ≥ 0.7, with the lubrication theory by Koch and Ladd16 for
ε ≤ 0.55, and with the empirical fit function by Yazdchi et al.17 over the entire range. The permeabilities of
the irregular arrays are remarkably similar to those of the regular lattices, which are included in Fig. 8 for
comparison.

The system size dependence of the permeabilities in Table S6 was assessed by rerunning one pillar
configuration per porosity as systems containing one and two consecutive copies of the same unit cell. The
results, averaged over three runs per system with body forces of fb = 0.1, 0.2 and 0.3ϵ/σ are presented in
Fig. S9. This plot indicates that the singular and doubled pillar arrays yield comparable permeabilities.

The parameters of the simulations of the random pillar configurations of the microfluidic chips are pro-
vided in Table S7. The permeabilities are averages over simulations with body forces of fb = 0.5, 1.0, 1.5
and 2.0ϵ/σ. Comparison with the experimental data, in Fig. 6, highlights the importance of the walls.

Table S6: Simulation parameters of irregular configurations in 2D.

ε Npil Lx [σ] Ly [σ] L|| [σ] Npart ⟨κp⟩/d2

0.55 90 139 33.03 118.90 27,583 0.007

0.60 90 147 35.03 126.11 30,951 0.01

0.65 90 155 37.45 134.82 34,886 0.02

0.70 90 166 40.45 145.62 40,371 0.03

0.75 90 180 44.31 159.52 47,949 0.04

0.80 72 199 39.63 178.35 47,413 0.08

0.85 72 226 45.76 205.94 62,147 0.2

Table S7: Simulation parameters of the microfluidic chips in 2D.

ε Npil Lx [σ] Ly [σ] L|| [σ] Npart κp/d
2

0.58 800 214 193.39 193.39 248,651 0.009

0.65 800 232 211.84 211.84 295,276 0.02

0.73 800 262 241.20 241.20 379,684 0.04

0.87 800 368 347.61 347.61 768,536 0.2
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Figure S8: The permeability of irregular arrays of cylindrical pillars against porosity. Blue solid circles mark
our simulation results for 25 random configurations at each porosity, the lines denote theories by Spielman
and Goren15 (SG) and Koch and Ladd16 (KL) and a fit function by Yazdchi et al.17(YSL). For comparison,
we also show simulation data on irregular arrays by Chen and Papathanasiou13 (CP) and Sangani and Yao14

(SY), as well as our data for the square and hexagonal lattices.
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Figure S9: The comparison of κp calculated for irregular lattices between double (κp,N=2) and single copies
(κp,N=1) of pillars.
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S2.2 Simulations in 3D

Figure S10: Snapshot of the 3D simulation set-up for fluid (blue) flowing through a disordered array of
pillars (dark grey) in MDPD simulations, at a porosity of 55%. All pillars have the same diameter d and
span the height H between floor (dark grey) and the ceiling (not shown) bounding the flow cell. Periodic
boundary conditions apply in the x and y directions. In the driving region of length Ld (yellow), the fluid
particles experience a body force fb in the x direction (arrows). Consequently, the fluid in the remainder of
the system experiences a pressure-driven flow. The length L|| and width Ly of the pillared region match the
box dimensions used in the Monte Carlo simulation generating the pillar configuration. The measurement
region of length Lm is separated from the driving region by the in-flow and out-flow regions of lengths Li

and Lo, respectively.
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S2.2.1 Common parameters in 3D

In the next sections we tabulate the parameters and normalized permeabilities of all 3D systems simulated
in this study. Parameter common to all simulations can be found in Table S1. The various parameters listed
in the ensuing tables are described in Table S8. Pillar diameters are fixed at d = 5σ, the thicknesses of the
walls are hw = 2σ.

Table S8: Parameter definitions for 3D simulations.

parameters definition

H height of flow channel

ε porosity

Npil number of pillars

Lx box length in x direction

Ly box length in y direction

Lz box length in z direction

L|| length of pillared region

Npart total number of particles

Bfit/B rescaled velocity amplitude

µfit
eff/µ rescaled effective viscosity

κeff wall-bounded permeability

15



S2.2.2 Square lattices in 3D

The parameters for 3D simulations of flow through pillars arranged on square lattices and square lattices
rotated over 45◦, bound by two walls, are tabulated in Tables S9 and S10. The calculated permeabilities in
the last column of both tables denote averages over simulations with body forces of fb = 0.2, 0.25 and 0.3
ϵ/σ. The last digit to Bfit/B, µfit

eff/µ and κeff/d
2 are placed between brackets to highlight that these digits

may be subject to change within the accuracy of the calculations.

Table S9: Simulation parameters of square lattices in 3D.

H [σ] ε Npil Lx [σ] Ly [σ] L|| [σ] Npart Bfit/B µfit
eff/µ κeff/d

2

7.5

0.55 45 80 33.03 59.45 182,929 0.87 2.9(4) 0.005

0.60 45 84 35.03 63.06 203,723 0.77 2.1(2) 0.007

0.65 45 88 37.45 67.41 228,100 0.75 1.7(1) 0.01

0.70 45 93 40.45 72.81 260,310 0.87 1.9(1) 0.02

0.75 45 100 44.31 79.76 306,464 0.90 1.9(1) 0.03

0.80 36 110 39.63 89.17 301,641 0.91 1.8(1) 0.04

0.85 36 123 45.76 102.97 389,581 1.2 2.5(4) 0.06

0.90 28 119 42.04 98.08 346,142 1.3 2.3(3) 0.08

10.0

0.55 45 80 33.03 59.45 222,591 0.83(1) 2.3(3) 0.005

0.60 45 84 35.03 63.06 247,886 0.77(1) 2.5(3) 0.007

0.65 45 88 37.45 67.41 277,540 0.77(0) 1.9(0) 0.01

0.70 45 93 40.45 72.81 316,777 0.88(0) 2.1(0) 0.02

0.75 45 100 44.31 79.76 373,056 0.94(2) 2.2(1) 0.03

0.80 36 110 39.63 89.17 367,066 0.88(1) 1.7(1) 0.05

0.85 36 123 45.76 102.97 474,150 1.0(0) 2.1(1) 0.07

0.90 28 119 42.04 98.08 421,252 1.1(1) 2.1(3) 0.1
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Table S10: Simulation parameters of rotated square lattices in 3D.

H [σ] ε Npil Lx [σ] Ly [σ] L|| [σ] Npart Bfit/B µfit
eff/µ κeff/d

2

7.5

0.55 56 81 37.37 65.39 209,454 0.85(1) 2.2(3) 0.005

0.60 56 85 39.63 69.36 233,065 0.92(1) 2.4(2) 0.008

0.65 56 89 42.37 74.15 260,803 0.87(1) 2.2(2) 0.01

0.70 56 95 45.76 80.09 300,837 0.85(1) 1.8(1) 0.02

0.75 56 102 50.13 87.73 353,688 0.96(5) 2.1(3) 0.03

0.80 56 112 42.04 98.09 325,735 0.99(5) 2.0(3) 0.04

0.85 42 126 48.54 113.26 423,041 1.2(2) 2.4(7) 0.06

0.90 42 149 39.63 138.72 408,761 1.6(4) 2.9(8) 0.09

10.0

0.55 56 81 37.37 65.39 254,856 0.84(1) 2.5(3) 0.005

0.60 56 85 39.63 69.36 283,618 0.91(2) 2.2(4) 0.008

0.65 56 89 42.37 74.15 317,457 0.86(1) 2.1(1) 0.01

0.70 56 95 45.76 80.09 366,165 0.87(1) 2.0(1) 0.02

0.75 56 102 50.13 87.73 430,492 0.95(2) 2.1(3) 0.03

0.80 36 98 42.04 98.09 346,962 0.93(2) 1.9(1) 0.05

0.85 36 109 48.54 113.26 445,502 0.98(2) 1.7(1) 0.08

0.90 24 129 39.63 138.72 430,515 1.2(2) 2.1(1) 0.1
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S2.2.3 Irregular distributions in 3D

Table S11 lists the parameters for 3D simulations of cylindrical pillars positioned in irregular arrays, bound
by two walls. At each porosity, a set of 25 uncorrelated unit cells was used; the same unit cells were also
employed in the 2D simulation, with each 3D system containing a single copy only. The flow through these
array were attained using a body force of fb = 0.3ϵ/σ.

Table S11: Simulation parameters of irregular configurations in 3D.

H [σ] ε Npil Lx [σ] Ly [σ] L|| [σ] Npart Bfit/B µfit
eff/µ κeff/d

2

7.5

0.55 45 80 33.03 59.45 182,929 0.89(2) 3.4(6) 0.1

0.60 45 84 35.03 63.06 203,723 0.98(2) 3.6(4) 0.2

0.65 45 88 37.45 67.41 228,100 0.89(1) 2.7(2) 0.3

0.70 45 93 40.45 72.81 260,310 0.92(1) 3.2(1) 0.4

0.75 45 100 44.31 79.76 306,464 0.89(1) 2.2(1) 0.6

0.80 36 110 39.63 89.17 301,641 1.0(0) 2.8(1) 0.9

0.85 36 123 45.76 102.97 389,581 0.94(3) 1.8(1) 1.5

0.90 28 119 42.04 98.08 346,142 1.3(1) 2.5(3) 2.0

10.0

0.55 45 81 37.37 65.39 222,591 0.88(2) 3.4(5) 0.1

0.60 45 85 39.63 69.36 247,886 0.96(1) 3.6(1) 0.2

0.65 45 89 42.37 74.15 277,540 0.88(1) 2.5(1) 0.3

0.70 45 95 45.76 80.09 316,777 0.90(1) 3.1(2) 0.4

0.75 45 102 50.13 87.73 373,056 0.92(1) 2.5(1) 0.7

0.80 36 98 42.04 98.09 367,066 0.99(1) 2.6(1) 1.1

0.85 36 109 48.54 113.26 474,150 0.97(2) 2.0(1) 2.0

0.90 28 129 39.63 138.72 561,325 1.1(0) 2.1(0) 2.8

12.5

0.55 45 80 33.03 59.45 262,272 0.86(0) 2.7(1) 0.1

0.60 45 84 35.03 63.06 292,125 0.95(0) 3.2(1) 0.2

0.65 45 88 37.45 67.41 327,051 0.89(0) 3.0(1) 0.3

0.70 45 93 40.45 72.81 373,380 0.89(1) 3.2(1) 0.4

0.75 45 100 44.31 79.76 439,680 0.92(0) 2.5(1) 0.8

0.80 36 110 39.63 89.17 432,608 0.99(1) 2.8(0) 1.2

0.85 36 123 45.76 102.97 558,808 0.95(2) 2.0(1) 2.4

0.90 28 119 42.04 98.08 661,617 1.02(1) 2.0(0) 3.6
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The flow resistance due to the pillars can be calculated by 3D simulations without walls, using periodic
boundary conditions along the z direction instead. In view of the translation symmetry along the z direction,
it is more efficient to use 2D simulations. To assess the agreement between the 2D and 3D simulations, one
random unit cell per porosity was simulated in both 2D and 3D. The parameters of these simulations are listed
in Table S12. The permeabilities represent averages over three independent runs with body forces fb = 0.02,
0.03 and 0.05ϵ/σ in 2D and fb = 0.1, 0.2 and 0.3ϵ/σ in 3D. Figure S11 shows the close adherence between the
permeabilities obtained in 2D and 3D. Note that the two sets of simulations use two distinct fluids, differing
e.g. in their viscosity, and different particle-based representations of the same pillar configurations.

Table S12: Simulation parameters of irregular configurations without walls in 2D and 3D.

ε Npil Lx [σ] Ly [σ] L3D
z [σ] L|| [σ] N2D

part N3D
part κ2D

p /d2 κ3D
p /d2

0.55 45 80 33.03 5 59.45 15,883 79,412 0.2 0.1

0.60 45 84 35.03 5 63.06 17,695 88,434 0.24 0.20

0.65 45 88 37.45 5 67.41 19,818 98,999 0.4 0.5

0.70 45 93 40.45 5 72.81 22,621 112,993 0.7 0.6

0.75 45 100 44.31 5 79.76 26,650 133,060 1.1 1.1

0.80 36 110 39.63 5 89.17 26,219 130,963 1.9 1.9

0.85 36 123 45.76 5 102.97 33,851 169,124 4.7 4.4

10−1 100 101

κ2D
p

10−1

100

101

κ
3D p

Figure S11: Permeabilities of disordered pillar arrays κp, in the absence of walls, for 2D and 3D simulation
with identical pillar arrangements. Horizontal (invisible) and vertical error bars correspond to standard
deviations. Along the solid line, representing the ideal agreement between 2D and 3D simulations, the
porosity increases from ε = 0.55 in the bottom-left to 0.85 in the top-right.
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S3 Theories

S3.1 Permeabilities of lattices in 2D

Table S13 and S14 list theoretical expressions for the rescaled permeability κp/d
2 through cylinders placed on

lattices. Some theories are conveniently expressed in porosity, others in the solid volume fraction ϕ = 1− ε.

Table S13: Theoretical permeabilities of square lattices in 2D.

Author(s) Abbrev. κp/d
2

Drummond and Tahir1 DT
1

32ϕ

(
− lnϕ− 1.476 +

2ϕ− 0.796ϕ2

1 + 0.489ϕ− 1.605ϕ2

)

Bruschke and Advani3 BA-1
1

32ϕ

(
− lnϕ− 1.500 + 2ϕ− ϕ2

2

)

Kuwabara4 K
1

32ϕ

(
− lnϕ− 1.500 + 2ϕ− ϕ2

2

)

Hasimoto5 H
1

32ϕ

(
− lnϕ− 1.476 + 2ϕ+O(ϕ2)

)

Sangani and Acrivos6 SA

1

32ϕ

(
− lnϕ− 1.476 + 2ϕ− 1.774ϕ2 + 4.076ϕ3 +O(ϕ4)

)
(small ϕ)

1

9
√
2ϕ

(
1−

√
ϕ

ϕmax

)5/2

(large ϕ)

Tsay and Weinbaum7 SATW 0.0143 ∆2.377, with ∆ =

√
π

ϕ
− 2 (interpolation formula to SA)

Happel18 HP
1

32ϕ

(
− lnϕ− 1− ϕ2

1 + ϕ2

)

Gebart9 G
4

9π
√
2

(√
1− εmin

1− ε
− 1

)5/2

, with εmin = 1− π

4

Bruschke and Advani3 BA-2

(
1− l2

)2
12l3

(
3l
tan−1 λ√
1− l2

+
l2

2
+ 1

)−1

, l2 =
4

π
(1− ε), λ =

√
1 + l

1− l

Lee and Yang10 LY
ε3(ε− 0.2146)

31(1− ε1.3)

Sahraoui and Kaviany11 SK
0.0152πε5.1

1− ε

Tamayol and Bahrami12 TB
0.16√
1− ϕ

(
π

4ϕ
− 3

√
π

4ϕ
+ 3−

√
4ϕ

π

)
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Table S14: Theoretical permeabilities of hexagonal lattices in 2D.

Author(s) Abbrev. κp/d
2

Drummond and Tahir1 DT
1

32ϕ

(
− lnϕ− 1.497 + 2ϕ− ϕ2

2
− 0.739ϕ4 +

2.534ϕ5

1 + 1.2758ϕ

)

Sangani and Acrivos6 SA
1

32ϕ

(
− lnϕ− 1.490 + 2ϕ− ϕ2

2
+O(ϕ3)

)

Gebart9 G
4

9π
√
6

(√
1− εmin

1− ε
− 1

)5/2

, with εmin = 1− π

2
√
3

Tamayol and Bahrami12 TB
0.16√
1− ϕ

(
π

3
√
3ϕ

− 3

√
π

3
√
3ϕ

+ 3−
√

3
√
3ϕ

π

)

S3.2 Permeabilities of irregular distributions in 2D

Table S15 lists theoretical expressions for the rescaled permeability κp/d
2 of irregular arrays. The YSL

expression in the bottom row is explored below.

Table S15: Theoretical permeabilities of irregular distributions in 2D.

Author(s) Abbrev. κp/d
2

Spielman and Goren15 SG

1

8x
+

1

2
√
x

K1(1/2
√
x)

K0(1/2
√
x)

=
1

16ϕx

In this implicit equation for x = κp/d
2, Kn(x) denotes the

nth order Bessel function of the second kind.

Koch and Ladd16 KL

√
2

17

ε
5/2
c

ϕ
, for ε < 0.6. We refer to Ref. 16 for εc(ϕ).

2.76

ϕ exp(11.1ϕ)
(fit to their Fig. 21).

Yazdchi et al.17 YSL

0.2χ(γ2)γ
5/2
2 ,

with γ2 = 0.26ϕ0.6790 − 0.47 and χ(γ2) = 1− 0.5e−3.0γ2 .

21



The theory by Gebart9 (G) for regular lattices takes the form κp/d
2 = Cγ5/2(ε), with

γ =

√
1− εmin

1− ε
− 1, (S1)

and where the proportionality factor C and minimum porosity εmin vary with the lattice structure, see
Tables S13 and S14. The above square-root describes the scaling of the lattice spacing with porosity, hence
the distance between nth-nearest neighbour pillars is given by Dn(ε) = Dn(εmin)(γ + 1). Yazdchi et al.17

use the latter relation to extract the ‘scaling’ of irregular pillar arrangements from the mean distance ⟨Dn⟩
between nth-nearest neighbour pillars,

γn =
⟨Dn⟩
d

− 1. (S2)

A good agreement with the permeability was recovered when using the next-nearest neighbour, n = 2, whose
mean distance was well fitted by

⟨D2⟩ = D̄2

[
1 + ϕ2

(
1− ε

1− εirrmin

)ξ2
]
d, (S3)

with D̄2 = 0.5303, ϕ2 = 0.3372, ξ2 = 0.6790 and εirrmin = 0.4167. This function provides a good description
of the next-nearest pillar distances in our irregular arrays, as illustrated in Fig. S12(a). The plot also shows
that the standard deviation in the next-nearest neighbour distance increases with porosity, as expected.
Inserting of this γ2 as γ in Gebart’s theory yields a good description of the permeability of irregular arrays
for C = 0.2, see Fig. S12(b). The agreement improves upon multiplication with a fit function χ(γ2),

17 see
Fig. S12(b) and Table S15 (YSL).
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Figure S12: (a) The mean next-nearest neighbour distance ⟨D2⟩, plotted here as γ2 = ⟨D2⟩/d − 1, as
a function of porosity ε for three arrangements of cylindrical pillars. The theoretical (Th) expressions for
square (red dashed, sqr) and hexagonal lattices (black dotted, hex) match exactly with the simulation results
(not shown). For irregular lattices, small blue solid dots mark averages for 25 random configurations per
porosity, with the larger blue circles denoting the average over these configurations at each porosity. The
solid line represents Eq. S3. (b) The dimensionalized permeability as a function of γ2. The red dashed
and black dotted lines represent Gebart’s (G) theories for square and hexagonal lattices, respectively. The
blue solid line shows the extension of Gebart’s to irregular lattices by Yazdchi et al., based on the mean
next-nearest neighbour distance, while the blue dash-dotted line illustrates their full fit expression (YSL).
The simulation data for the irregular pillar arrangements are shown as 25 blue solid dots at every porosity,
which appear in the plot as clusters.

22



S3.3 Permeabilities of lattices in 3D

Lee and Fung19 solved the Stokesian flow around a single cylinder between two walls as an infinite series,
valid when the distance between the walls H is less than ∼10 times the pillar radius R. The two leading
terms of this series provide a good approximation when R < H. Lee20 used this solution to describe the flow
resistance by a rotated square lattice of cylinders between walls, see Fig. S13, in the limit of the interpillar
spacing far exceeding the diameter of the pillars. Tsay and Weinbaum7 used the theory by Lee and Fung to
derive a general solution for the flow resistance by a rotated square lattice between flat walls, in terms of an
infinite series. Their result converged to the expression by Lee and Sangani & Acrivos in the limits of high
and low porosity, respectively, suggesting that a more compact expression could be obtained by interpolating
between these limits. This they realized by an extrapolation of Lee’s expression (LTW in Table S16) and a
fit to the expression by Sangani and Acrivos (SATW), to arrive at the interpolation formula (TW). In the
table, the drag expressions by these authors have been inverted to obtain permeabilities. These expressions
compare very well against the simulation results, see Fig. S14, reaching their maximum relative deviation in
the interpolation region between the two limiting regimes.

Figure S13: Schematics of the rotated square lattice between flat walls, showing cut-sections of (a) the top-
view and (b) the side-view of flow channel. The arrows indicate the direction of flow.
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Table S16: Theoretical permeabilities of a rotated square lattice between walls

Abbrev. κeff/κw

SATW
1

f2d

(pillar dominated) where f2d =
H2

6W 2
f ′
2d

with f ′
2d =

Fd

µus
≈ 54.95

ϕ∆2.377
an approximation to SA.6

1

f3d

LTW where the expression f3d =
1− b1ϕ

1 + b1ϕ
by Lee20 for ϕ < ϕ∆

(wall dominated) is extrapolated as f3d =
1− b1ϕ

1 + b1ϕ
− 2b1

ϕ− ϕ∆

(1 + b1ϕ∆)2
for ϕ > ϕ∆,

with b1 = −K2(πR/H)

K0(πR/H)
and ϕ∆ = ϕ(∆ = H).

Kn(x) denotes the nth order Bessel function of the 2nd kind

TW
1

(fn
2d + fn

3d)
1/n

(interpolation) where n =
B

0.1918 + 0.3308B
with B =

H

2R
.
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Figure S14: Effective permeabilities of the flow through a rotated square lattice confined between top and
bottom walls. The effective permeabilties are normalized by the square of the pillar diameters.
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S4 Comparison with experiments

S4.1 Comparison with our experiments

Figure S15 shows comparisons between experimental and calculated effective permeabilities, supplementing
the numerical results in Fig. 13.
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Figure S15: Comparison of the experimental permeability κeff in this work with numerical results and
expressions for the effective permeability. (Left) Applicatons of Brinkman’s theory combining the simulated
2D pillar permeability κp(ε) with the theoretical amplitude B and various values of the effective viscosity.
(Right) Applicatons of Brinkman’s theory combining the pillar permeability of Yazdchi et al.17 (YSL in
Table S15) with the theoretical amplitude B and various values of the effective viscosity.

S4.2 Comparison with experiments by Gunda et al.

Gunda et al.21 etched square lattices of cylindrical pillars in silicon. Their systems provide a convenient
testing ground for the application of Brinkman’s theory, supplementing the irregular arrays studied in the
main text. The experimental data by Gunda et al. are collected in Table S17. The plot in Fig. S16(a) shows
that the effective permeability follows the systematic rise of the theoretical prediction for a square lattice
by Tamayol and Bahrami,12 though the latter systematically exceeds the experimental data. Combining
this prediction with Brinkman’s correction for the walls, using the constant effective viscosity µeff = 2.1µ
suggested by Fig. 11, yields effective permeabilities in better agreement with the experimental data. We
note that whereas the Brinkman correction predicts a decreasing ratio κeff/κ

TB
sq with increasing porosity, the

experimental data suggest a more constant ratio, see Fig. S16(b). It is conceivable that the limited width
of the channel, with nine pillars per row, contributes to the deviations from theory, especially at the higher
porosities.22

A second comparison with data from the literature, i.e. simulations by Wagner et al.,22 is presented in
the main text, see Fig. 14.
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Table S17: Experimental parameters for square lattices between walls by Gunda et al.

ε d [µm] H [µm] κeff [10−10 m2]

0.50 100 98.4 0.2

0.70 50 98.4 0.4

0.80 50 98.4 1.5

0.90 30 98.4 1.7

0.95 30 98.4 7.0
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Figure S16: (a) Comparison of the effective permeability of square arrays measured by Gunda et al. with
the permeability of square pillar arrays following the theory by Tamayol and Bahrami (TB, see Table S13)
and the combination of said theory with Brinkman’s theory. (b) The experimental and calculated effective
permeability normalized by the theoretical permeability of the square pillar array (TB), to highlight the
impact of the walls for two effective viscosities.
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