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S1. Lattice Boltzmann Method (LBM) simulations 

S1.1. Introduction of the simulations by employing LBM 

Lattice Boltzmann method (LBM) is developed based on the lattice gas automata.1 The 

fundamental idea of LBM is to solve the discrete lattice Boltzmann equation on the regular 

lattices. LBM owns a lot of advantages, such as simple arithmetic calculations, more efficient 

of parallelism and feasible abilities of complex boundaries. In this regard, LBM is successfully 

applied in simulating the problems of flow in porous materials,2 particle suspensions,3 static 

and dynamic wetting phenomena on smooth and rough surfaces4,5 and so on. 

 

Here, the wetting behavior of droplet interacted with the pillars is simulated by employing a 

three-dimensional D3Q19 model with Bhatnagar-Gross-Krook approximation which is a 

simple linearized version of the collision operator that makes use of a single relaxation time 

towards the local equilibrium6. The lattice Boltzmann equation from a discrete kinetic equation 

for the particle distribution function is 

 

 , (S1) 

 

where fi is the particle velocity distribution function along the i-th direction (i = 0, 1, 2, … 18), 

r is the position of the lattice, ei is the local particle velocities, Δt is the time increment, and τ 

is the collision time. Moreover, the equilibrium distribution function fieq(r, t) is defined as 

 

 , (S2) 

 

where the weight wi are 1/3 for the rest particles (i = 0), 1/18 for i = 1 ~ 6 and 1/36 for i =7 ~ 

18, respectively. c is the basic speed on the lattice. ρ(r) and u respectively represent the fluid 

density and velocity, and they are defined as follows 
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 . (S3) 

 

By incorporating nonlocal interactions among the fluid particles, we can simulate the interfacial 

energy. Regarding the approach developed by Shan and Chen,7 we consider a fluid-fluid 

interaction as follows 

 

 , (S4) 

 

where the weight wi are 0 for |ei| = 0, 1/18 for |ei| = 1 and 1/36 for , respectively. G 

represents the interaction strength, and we adopt ψ(r) = 1 – exp[– ρ(r)] as the interaction 

potential. Moreover, we use the following interaction potential as the interaction between the 

fluid and solid phases 

 

 , (S5) 

 

where Gw represents the interaction strength between the fluid and solid. s = 0 and s = 1 are 

defined for the corresponding lattice points where they are in fluid and solid phases, respectively. 

The fluid-fluid interfacial energy and solid-fluid interfacial energy are adjusted by changing the 

fluid-fluid interaction strength G and the solid-fluid interaction strength Gw, respectively. By 

this way, we can simulate the contact angle ranging from 0° to 180°. 

 

When we take consideration of the fluid-fluid interaction and the fluid-solid interaction, the 

local fluid velocity is determined as follows 

 

 , (S6) 
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where u'(r) is the updated fluid velocity of the next iteration. 

 

S1.2. Description of the simulation systems 

LBM has its own unit, i.e., size (lu), mass (mu) and time (ts). Since we do not consider the size 

effect, we use dimensionless formulas in the LBM simulations, and we mainly keep S/L = 1.5 

as constant, with S and L being the spacing and width of the pillars, respectively (later we will 

discuss more values of S/L, and we will see that S/L does not change the main conclusion of the 

paper). Moreover, different contact angles are realized by varying the value of Gw. The box size 

in our simulations is 160 lu × 160 lu × 181 lu (length × width × height), and the width of the 

square pillar is L = 6 lu. The entire time step is typically on the order of 104 ts. Moreover, since 

it is difficult to introduce nanostructures on the surface of the micropillars, we assign specific 

values of the contact angle on the surfaces of the micropillars. Here, it is stressed that in real 

experiments, the nanostructures would vary the wetting behaviors of the condensed droplet, 

however, which is beyond the scope of the simulation capability. 

 

In experiments, the droplet naturally grows up and its volume increases due to condensation. 

To simulate a uniform growth of the droplet, in our simulations, we set a source which is always 

at the mass center of the droplet, and the source has a spherical shape of radius 3 lu which is 

very small compared with the droplet. To suppress the dynamics, the source with outflow of a 

very small mass flow rate is employed to guarantee that the droplet quasi-statically increases. 

It is stressed that in this study, we mainly focus on the quasi-static process before the wetting 

state transition of the droplet, but not the dynamic process. 

 

As shown in Fig. S1, two cases of simulations are exemplarily given to show the influences of 

the pillar height H on the wetting state transitions. In these examples, θ = 140° and S/L = 1.5, 

whereas H/L = 5.5 and H/L= 2.5 in Figs. S1(a) and S1(b), respectively. When the pillars are 

higher (i.e., H/L = 5.5), the droplet dewets spontaneously from the pillars when hd < H, where 

hd is defined as the vertical position of its maximum transverse cross-section (with the width 
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dmax). We call this case the Cassie-jumping mode. However, when the pillars are lower (i.e., 

H/L = 2.5), the droplet grows until hd ≥ H, and then it dewets from the pillars, and we call this 

case the Cassie-detaching mode. These results suggest that the spontaneous dewetting of droplet 

is more likely to happen on the substrate with higher pillars. 

 

 
 

Fig. S1. LBM simulation results. (a) Cassie-jumping transition mode with θ = 140°, S/L = 1.5 and H/L = 

2.5. (b) Cassie-detaching transition mode with θ = 140°, S/L = 1.5 and H/L = 5.5. dmax represents the maximum 

width of the transverse cross-section, and hd represents the corresponding vertical height of that cross-section.  

 

S2. Surface Evolver simulations 

The confined droplets in our study have very complex geometry. Due to the absence of 

analytical solution, one public domain software package called Surface Evolver (SE),8 

developed by K. Brakke, is used to simulate the morphology of droplets confined in the pillars. 

The basic concept of SE is to minimize the energy and find the equilibrium shape of interfaces 

subject to the user defined surface tensions, interface areas, and constraints. SE can handle an 

arbitrary topology of the liquid surface, and during the calculations, it can report total energies, 

surface areas of the interface, and many other variable quantities.9,10 
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In the simulation, the total surface energy E is defined as E = γ(ALV – ASL cosθ), in which ALV 

and ASL are the areas of the liquid-vapor and the solid-liquid interfaces, respectively. θ is the 

contact angle defined based on the Young’s equation cosθ = (γSV – γSL)/γ, in which γ, γSL and 

γSV are the liquid-vapor, solid-liquid and solid-vapor interfacial tensions, respectively. 

Concerning in SE simulations, it is not very convenient to add two-tier structures, we assign 

specific contact angles on the surfaces of the micropillar, which is similar to the aforementioned 

LBM simulations. 

 

 

 
Fig. S2. SE simulation results showing the geometry of droplets confined in the micropillars. The red 

and green colors represent the liquid-vapor and the solid-liquid areas, respectively. H, S, L denote the height, 

spacing and width of the pillar. θ is the contact angle between water and the surface of the pillar. κ1 and κ2 

are the two main curvatures. d and h are the width and height of the droplet, respectively. Two examples of 

the equilibrium wetting state with θ = 150° (a) and θ = 60° (b) are given. 

 

As shown in Fig. S2(a), we give the equilibrium wetting state of a superhydrophobic droplet (θ 

= 150°) confined in four neighboring pillars. Here, S/L = 1.5 and H/L = 5.5. The yellow, green 

and red colors represent the solid-vapor, solid-liquid and liquid-vapor interfaces, respectively. 

Fig. S2(b) shows the equilibrium wetting state of a hydrophilic droplet (θ = 60°). The spacing 

and height of the pillars in Fig. S2(a) respectively have the same values as them in Fig. S2(b). 
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Here, we emphasize that in order to make the solid-liquid (green color) interface more visible 

in Fig. S2(b) and make comparisons with Fig. S2(a), the appearance of the pillars in Fig. S2(b) 

is just displayed the same as Fig. S2(a). In Fig. S2(b), the value of L is much larger, otherwise 

the droplet cannot be confined. However, for certain values of the contact angle and the volume 

of the droplet, when the values of S and H are given, and meanwhile the value of L is large 

enough, the configuration of the droplet in the equilibrium wetting state will not depend on L. 

This is the reason that in Fig. S2(b), the width of the pillars is not fully displayed. 

 

For convenience, we use dimensionless parameters. We choose the pillar length L as the length 

scale factor, together with the surface tension γ, all the geometrical and physical parameters are 

normalized as 

 

 , (S7) 

 

where S, H, h, A, κ, ΔP and E denote spacing and height of the pillar, height, area, curvature, 

pressure and energy of the droplet, respectively. 

 

S3. Theoretical analyses 

S3.1. Laplace pressure 

In the following, we will give a general formula to relate the Laplace pressure ΔP to the relevant 

geometrical parameters. Considering that in real case the condensed droplet is sufficiently small, 

the effect of gravity is negligible in the present study. Moreover, it is emphasized that in this 

section, we investigate the situation before the occurrence of the wetting state transition. Thus, 

the droplet is in an equilibrium state with a uniform pressure throughout the droplet. Based on 

the differential geometry,11 there are two main curvatures κ1 and κ2 at any point of the liquid-

vapor interface, and the total curvature 2κ = κ1 + κ2 is constant.12 In our case, the droplet is like 

a cross intersection of two sandwich droplets, and there is no analytical solution to either 

describe its morphology or ΔP. We first choose the point at the equator of the droplet to make 

2 2, , , , , ,S H h A P ES H h A L P E
L L L L L L

k k
g g
D

= = = = = D = =



8 
 

analyses. κ1 could be linked to S, and we could obtain an approximation κ1 ≈ – 2cosθ/S. On the 

other hand, the cross-section of the droplet in the vertical direction is like an ellipse,13 even 

though we could not directly obtain the exact value of κ2, it is reasonable to express it as the 

function of θ and 1/h, i.e., κ2 ≈ f(θ, 1/h), and we are able to approach it by Taylor series. Thus, 

for arbitrary contact angles, we assume that the relationship between 2κ and h has the following 

dimensionless formula 

 

 , (S8) 

 

where α1, α2 and α3 are coefficients and they are the functions of the contact angle θ. In this 

regard, we obtain 

 

 . (S9) 

 

As shown in Fig. S3, we give the dimensionless result of ∂(2κ)/∂(1/h) vs. 1/h, in other words, 

∂(ΔP)/∂(1/h) vs. 1/h, in the dimensionless form. 

 

 
Fig. S3. Relationship between ∂(2κ)/∂(1/h) and 1/h in the dimensionless form. The dots are SE simulation 
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results, and the solid lines with corresponding colors indicate the values of α1 when 1/h → 0. 

 

As we know,  when . As shown in Fig. S3, we find that 

 indeed approaches a constant for a specific θ when  (solid line), and 

α1 ≈ 1.17, 1.55, 1.88, 2.00, 1.85 and 1.60 are extracted for θ = 180°, 150°, 120°, 90°, 60° and 

30°, respectively. Then, we plot α1 as a function of θ in Fig. S4. 

 

 
 

Fig. S4. Relationship between α1 and θ ranging from 0° to 180°. The dots are the results obtained from Fig. 

S3 (solid lines), and the red curve is the result of eqn (S12). 

 

We notice that  and α1|θ=90° ≈ 2.0. To find α1, we build an approximate 

relationship 

 

 , (S10) 

 

where eqn (S10) must satisfy g|θ = 180° = 0 and g|θ =90° = 2. We further approximate 

 

 . (S11) 
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Next, substituting eqn (S11) into eqn (S10), we get the following approximate solution 

 

 . (S12) 

 

As we can see from Fig. S4, the theoretical result obtained from eqn (S12) (red curve) is very 

well consistent with SE simulation results (dots). Finally, a combination of eqn (S8), Eq. (S12) 

and Young-Laplace equation ΔP = 2κγ leads to eqn (1) in the main paper. 

 

 

 

Fig. S5. (a) Relationship between ΔP and 1/h in dimensionless form. The dots are simulation results obtained 

by SE, and the curves are theoretical results of eqn (1) in the main paper. (b) Two examples (θ = 150° and θ 

= 60°) showing the evolutions of the droplet morphology. 
 

Furthermore, in order to verify the generality of eqn (1), as shown in Fig. S6, we carry out more 

simulations with various values of S/L. The dots in Fig. S6(a) and Fig. S6(b) are simulation 

results of SE with S/L = 1 and S/L = 3, respectively, and the curves with the corresponding 

colors are the theoretical results obtained using eqn (1). It can be seen that the simulation results 

are in very good agreement with the theoretical results. In this regard, we conclude that eqn (1) 

in the main text is general even though in the above we build the theory by employing a specific 

value of S/L. 
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Fig. S6. Relationship between ΔP and h in dimensionless form. The dots are simulation results obtained by 
Surface Evolver (SE), and the curves with the corresponding colors are theoretical results of eqn (1) in the 
main text for different values of the contact angle. (a) S/L = 1; (b) S/L = 3. 

 

S3.2. Some basic geometrical relationships  

To find the criterion for the wetting state transition, we devote to finding some basic geometrical 

relationships. For the hydrophobic case, first, we will find the relationship between the width d 

and the height h of the droplet. Based on the results obtained by SE simulations, as shown in 

Fig. 3(b) of the main paper, we notice that the droplet height h has a linear relationship with the 

droplet width d. 

 

One can imagine that, when the droplet grows and just touches the four pillars around it, it is 

an undeformed sphere having . For a specific case when q = 90° as shown in Fig. 

S7, the direction of the binormal of the liquid-vapor interface at any point of the solid-liquid-

vapor three-phase contact line is always orthogonal to the surface of the pillar. During the 

growth, the droplet is close to a sphere, therefore, we approximate . However, 

when q ≠ 90°, the droplet deviates from a sphere, therefore, we approximate the relationship 

between d and h as , where k is a fitting coefficient which depends on 

the value of θ. Based on a best fit to the SE simulation results in Fig. 3(b) of the main paper, we 

obtain k ≈ 1 + (cosq)/2, and we have 
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 . (S13) 

 

We further write eqn (S13) into 

 

 . (S14) 

 

As shown in Fig. 3(b) of the main paper, eqn (S14) agrees with the simulation results very well. 

 

 
 

Fig. S7. Morphologies of a droplet from side (a) and top (b) views with the contact angle θ = 90°. h and d 

represent the height and the width of the droplet along the vertical and the horizontal directions, respectively. 

The red and green colors represent the liquid-vapor and solid-liquid interfaces, respectively. 
 

S3.3. Derivation of the critical condition for the Cassie-jumping mode 

As shown in Fig. S8(a), we give the side view of a droplet when it reaches the critical condition 

for the Cassie-jumping mode. In other words, when the volume of the liquid further increases, 

the drop will jump out of the pillars, and this critical condition is the boundary between the 

Cassie-jumping and Cassie-detaching wetting state transition modes. In this case, the width and 

the height of the drop d and h reach their critical values dc and hc, respectively. 

 

First, we will find the width w of the droplet in the transverse cross-section where its height is 

equal to the height of the pillars (Fig. S8(a)). Here, since the gravity is ignored and the droplet 

is tightly confined, we assume the profile (Fig. S8(b)) of the droplet confined between two 

neighboring pillars is circular (from the top view) with a radius R. Based on the geometrical 
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relationships 2Rsin(θ – π/2) = S and 2R[1 – cos(θ – π/2)] + S = w, we obtain 

 

 . (S15) 

 

 
 

Fig. S8. Morphology of the droplet at the critical condition for the Cassie-jumping mode. The contact angle 

is θ = 160°. (a) Morphology of the droplet from the side view. H is the height of the pillars, hc and dc are the 

critical height and the width of the droplet, hu and Ru are the height and curvature radius (from the side view) 

of the droplet above the pillars. (b) Morphology of the droplet from the top view. w and R are the width and 

the curvature radius of the transverse cross-section which height is equal to the height of the pillars. 
 

Next, we approximate the profile of the droplet as elliptical as shown from the side view in Fig. 

S8(a),14 and we construct a two-dimensional Cartesian coordinate system. Then, we have 

 

 . (S16) 

 

Since the point (w/2, H) is at the ellipse, we have 

 

 . (S17) 

 

As a consequence, eqn (S17) leads to 
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 . (S18) 

Putting eqn (S14) and (S15) into eqn (S18), we have  

 

 . (2) 

 

As shown in Fig. S9, the theoretical results of eqn (2) (red curve) are consistent very well with 

the simulation results of SE (black squares). 

 

 

 

Fig. S9. Relationship between the critical height hc of the droplet and the height H of the pillars in the 

dimensionless form. The black dots and the red curves represent the simulation results and the results of eqn 

(2), respectively. The contact angle is θ = 160°. 

 

Furthermore, as we know, the spontaneous jumping of the droplet is driven by a Laplace 

pressure difference at the bottom side ΔPb and the upper side ΔPu of the droplet.15,16 Based on 

the morphology of the droplet shown in Fig. S8(a), we approximate the upper side as spherical 

with a radius Ru. Considering Ru2 = (Ru – hu)2 + (w/2)2, we have 
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 . (S19) 

 

Substituting eqn (S15) and hu = hc – H into eqn (S19), we obtain eqn (3) in the main paper 

 

 . (3) 

 

S3.4. Derivation of the critical condition for the Cassie-detaching mode 

Considering the Cassie-detaching wetting state transition, we will calculate the Laplace 

pressure differences on the bottom side ∆Pb and the upper side ∆Pu of the droplet, and then find 

the critical condition. In other words, this critical condition is the boundary between the Cassie-

detaching and Wenzel-collapsing wetting state transition modes. Based on the simulations and 

the geometries as shown in Fig. 4(b)(i) in the main paper from a three-dimensional point of 

view, when the droplet grows big enough and the width of its cap d beyond the top of the pillars 

is larger than the distance along the diagonal direction of the four pillars, i.e., , 

the droplet cap will no longer sit on the pillars but gradually swallows the pillars. When the cap 

completely submerges the pillars, a Wenzel-collapsing wetting state translation will occur. Fig. 

4(b)(iii) shows the critical state of the Wenzel-collapsing mode of the droplet. Since the droplet 

is sufficiently big compared with the height of the pillars, we approximate R' ≈ b +H, where b 

is determined by . The Laplace pressure of the top of the droplet 

∆Pu = 2γ/R' = 2γ/(b + H) could be obtained as 

 

 . (5) 
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of the morphology of a condensed droplet from different views. Figure S10(a) shows the side 

view of the droplet, in which the droplet keeps growing. As time progress, the spherical part of 

the liquid-vapor interface keeps, and later it swallows the pillars. Figure S10(b) shows the 

zoomed-in views of the central cross-section of the droplet (from the side view) closed to the 

bottom part. It can be seen that during growing, on the one hand, the part of the droplet trapped 

among the pillars is almost unchanged, on the other hand, the liquid-vapor meniscuses trapped 

among the pillar but which are above the bottom part are almost along the vertical direction, 

which means its meridional curvature approximately equals to zero, i.e., κ2 ≈ 0. Figure S10 (c) 

shows the time evolution of the cross-section of the droplet at H/2. It can be seen that the 

azimuthal curvature of the liquid-vapor meniscus remains unchanged during the growth of the 

droplet and is only related to the structural parameters and the wettability, i.e., κ1 = –2γcosθ/S. 

Therefore, we believe that in the process of droplet growth and collapse, the Laplace pressure 

at the bottom of the droplet (ΔPb) remains unchanged, which could be approximately expressed 

as eqn (4), i.e., ΔPb = (κ1 + κ2)γ = – 2γcosθ/S. 

 

 

 

Fig. S10. Time evolution of a condensed droplet in the Wenzel-collapsing mode with q = 100° and H/L = 2.5. 
(a) Side view of the droplet during the processes of growing up and collapsing; (b) Zoomed-in views of the 
central cross-section of the droplet (from the side view) closed to the bottom part, where the orange and the 
blue colors represent the liquid and gas phases, respectively; (c) Cross-section of the droplet at the height of 
H/2, where the dark blue color represents the cross-section of the pillars. 

(a)
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Therefore, the pressure difference δP = ΔPb – ΔPu between the bottom and upper sides of the 

droplet can be obtained. 

 

S4. Experimental procedure 

S4.1. Sample fabrication and coating 

Standard photolithography and deep reactive ion etching are used to create silicon micropillar 

arrays. To make the sample superhydrophobic, we employ a commercial superhydrophobic 

coating (Glaco Mirror Coat “Zero”, Soft 99, Japan) consisting of hydrophobic nanoparticles 

dispersed in isopropanol. The samples are first sunk in the solvent, and then they are taken out 

and dried in air for 1 min. After that, the samples are put into an oven at 120 °C for 15 min. 

These sinking and heating processes are repeated three times. After the above treatment, the 

contact angle of the flat silicon wafer reaches q* = 162 ± 2°. To obtain moderate hydrophobicity, 

the samples are treated with another commercial polyacrylate hydrophobic coating (Water 

Repellent Spray (3rd Generation, YACAIJIE, China) that mainly includes ployacrylates and 

propylene. After sinking a flat silicon wafer in the solvent, removing and drying for 10 min and 

repeating twice, the contact angle is q* = 123 ± 2°. Moreover, by employing molecular vapor 

deposition (MVD) to deposit FDTS (C10H4Cl3F17Si) onto the sample, we could also obtain 

hydrophobicity. For a flat silicon wafer, after the treatment, the contact angle becomes q* = 109 

± 3°. 

 

S4.2. Characterization of the surfaces 

The micropillared surfaces are characterized by a field-emission scanning electron microscope 

(SEM) (Quanta FEG450). More details of the corresponding dimensions of the samples are 

given in Supporting Information Table 1. 

 

As shown in Supporting Information Table S1, the width L and spacing S of the micropillars 

are equal, and the width of the micropillars ranges from 2 μm to 10 μm. There are two different 

heights H of the pillars, i.e., 6 μm and 8 μm. After making normalization by L, the micropillared 
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substrates have six different dimensionless heights. Moreover, as shown in Fig. S11, we give 

the topology of the corresponding pillars characterized by the SEM. 

 

Table S1. Details of the geometric parameters of the micropillared samples employed in the experiments. 
No. L (μm) S (μm) H (μm)  S/L H/L 
1 2 2 6 1 3 
2 6 6 6 1 1 
3 2 2 8 1 4 
4 4 4 8 1 2 
5 6 6 8 1 1.33 
6 10 10 8 1 0.8 

 

 

 

Fig. S11. SEM images of the micropillared substrates. The sample numbers in Table S1 are marked as N1-

N6, respectively, among which N1-N4 are bare pillars and N5-N6 are pillars coated with the commercial 

coating agent (Glaco, Soft99).17,18 

 

S4.3. Contact angle measurement 

Measurements of the contact angle and the contact angle hysteresis are performed at room 

temperature (about 25 °C) and a relative humidity of 40 %. An automatic microscopic contact 

angle meter (DSA25S, KRUSS, Germany) is employed. Before the measurement, all samples 

are cleaned by acetone, followed by deionized water, and finally dried by blowing nitrogen. To 

measure the contact angle, small droplets of 5 μl are smoothly deposited on the samples. By 

injecting and pumping back water from the droplet, the advancing and receding contact angles 

N1 N2 N3

N4 N5 N6

5 µm 15 µm 5 µm

15 µm 15 µm 15 µm
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qa and qr are measured, respectively (see Supporting Information Fig. S12). 

 

In order to quantify the wettability of the substrates, we measure the apparent contact angel θ*, 

the advancing contact angle θa and the receding contact angel θr of flat silicon wafers treated 

by different coatings. The detailed results are given in Table S2 and Fig. S12. 

 

Table S2. Details of the apparent contact angle θ*, the advancing contact angle θa and the receding contact 

angle θr of flat silicon wafers treated by different coatings. 
No. θ*(°) θa(°) θr(°) Coating 
1 162±2 167±2 156±3 Glaco 
2 123±2 129±2 118±3 Polyacrylate 
3 109±3 116±3 97±3 FDTS 

 

 

 

Fig. S12. Contact angle measurements on flat silicon wafers coated with hydrophobic essences. (a) Glaco, 

θ*= 162 ± 2°. (b) Fluoroacrylate, θ*= 123 ± 2°. (c) FDTS, θ*= 109 ± 3°. The scale bars represent 0.5 mm. 

 

S4.4. Experimental setup 

The sketch of the experimental setup is given in Supporting Information Fig. S13. The 

condensation process is observed by using a microscope (BX51, Olympus, Japan) equipped 

with a CCD camera (UI-2220SE-M-GL, IDS, Germany). The samples are placed at ambient 

temperature of 21 ± 2 ℃ and humidity of 50 ± 10%. The temperature of the cooling stage is 

kept at 2 ± 0.3℃. 

 

As shown in Fig. S13, we give the schematic of the experimental setup. The key parts of the 

experimental setup consist of a microscope stage, a cooling stage, a refrigerator, an optical 

microscope (BX 51, Olympus, Japan) and a CCD camera (UI-2220SE-M-GL, IDS, Germany). 

(a) (b) (c)
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The cooling stage is fixed on the workbench of the microscope. The CCD camera is mounted 

on the eyepiece interface of the microscope. The refrigerator is connected to the cooling stage 

to guarantee that the temperature of the cooling state satisfies the required value for 

condensation. The samples are placed horizontally on the cooling stage. The top-view images 

are captured with the CCD camera during the condensation. The key parts of the components 

are put into a chamber (i.e., enclosed by the red dotted line in Fig. S13). In addition, a humidifier 

is placed in the chamber to maintain a moist ambient environment. 

 

 
 

Fig. S13. Schematic showing the key parts of the experimental setup for the droplet condensation experiment. 

 

S4.5. Experimental results 

As shown in Fig. S14, condensation happens on the Glaco-coated substrate with θr = 156 ± 3° 

and H/L = 2 (sample No. 4 in Table S1), and here we focus on one droplet. As the condensation 

progresses (t < 79 s), the diameter of droplet increases gradually. However, at t = 80 s, the 

diameter of droplet suddenly increases which means the spontaneous dewetting transition 

occurs, and the droplet jumps out of the pillars and locates at the top of the pillars. In addition, 

this wetting state transition could also be perceived by the sudden change of the grey levels of 

the two successive images (i.e., t = 79s and t = 80s). After the transition, the droplet continues 

to grow and its diameter increases smoothly (80 s < t < 119 s). When the droplet grows big 

CCD

Microscope

Refrigerator

Sample

Images

Cooling
stage
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enough (t = 120 s), it merges with the surrounding droplets and jumps out of the field of view. 

 

 
 

Fig. S14. Evolution of the droplet width with time. The insets along the experimental data correspond to t = 

76, 79, 80, 119 and 120 s, respectively. There is a dewetting at t = 79 s and a jumping at t = 119 s. 

 

In order to verify the repeatability of our experimental results, we perform a large number of 

condensation experiments. Our experimental data are repeatable and we observed no less than 

100 times repeatable condensation phenomena for each type of the wetting state transition. As 

examples shown in Fig. S15, we respectively show five times of the spontaneous dewetting 

mode (Fig. S15(a)), passive dewetting mode (Fig. S15(b)) and Wenzel wetting mode (Fig. 

S15(c)).  

 

 
 
Fig. S15. Repeatability of the experimental results. Five examples of each wetting mode are given. (a) 
Spontaneous dewetting mode (θr = 156 ± 3°, H/L= 2, sample No. 2 in Table S1); (b) Passive dewetting mode 
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(θr = 118 ± 3°, H/L = 3, sample No. 1 in Table S1); (c) Wenzel wetting mode (θr = 97 ± 3°, H/L = 1.33, sample 
No. 5 in Table S1). 

 

In the above, we carry out LBM simulations using S/L = 1.5. Since the parameters of the 

micropillars in the experiment are fixed at S/L = 1 (see Table S1), as shown in Fig. S16, we 

supplement the LBM simulations (dots) by employing S/L = 1. The red and the black curves 

are the theoretical results that distinguish the Cassie-jumping, the Cassie-detaching and the 

Wenzel modes. It can be seen that when we change the value of S/L, the theoretical and 

simulation results (dots) remain consistent with each other very well. This indicates that the 

simulated results are generic to structures with different values of S/L. 
 

 
 
Fig. S16. Phase diagram of wetting state transitions of the condensed droplet with S/L = 1. The red, green 
and purple dots represent the simulation results of the Cassie-jumping, Cassie-detaching and Wenzel modes, 
respectively. The red and black curves are theoretical results of the boundaries. 

 

 

Video legend 

Video S1. Wetting state transition modes of the droplets by employing LBM simulations. 

The movie shows the entire processes of the wetting state transitions of the four modes. The 

upper left and right panels are the Cassie-jumping mode (q = 150°, H/L = 2.5) and Cassie-

detaching mode (q = 130, H/L = 2.5), respectively. The bottom left and right panels are the 

Wenzel-collapsing (q = 100°, H/L = 2.5) and Wenzel-spreading mode (q = 90°, H/L = 5.5), 

respectively. 
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Video S2. Spontaneous dewetting of the droplet observed in the experiment. The 

geometrical parameters of the pillars are L = 4 μm, S = 4 μm and H = 8 μm, and the substrate 

is coated with Glaco. When condensation happens, a droplet appears and is confined in the four 

surrounding pillars. At t = 80 s, both the shape of the droplet and the gray levels of the two 

successive images suddenly change, suggesting an occurrence of dewetting, and the droplet 

escapes from the pillars but does not jump away from the substrate. The droplet continues to 

grow and finally merges with the surrounding droplets at t = 120 s and then disappears from the 

field of view. 

 

Video S3. Passive dewetting of the droplet observed in the experiment. The geometrical 

parameters of the pillars are L = 4 μm, S = 4 μm and H = 8 μm, and the substrate is coated with 

fluoroacrylate. When condensation happens, a droplet appears and is confined in the four 

surrounding pillars. At t = 184 s, passive dewetting of the droplet happens when it merges with 

the surrounding droplets, and the droplet jumps out of the pillars. 

 

Video S4. Wenzel wetting state transition observed in the experiment. The geometrical 

parameters of the pillars are L = 6 μm, S = 6 μm and H = 8 μm, and the substrate is coated with 

FDTS. When condensation happens, a droplet appears and is confined in the four surrounding 

pillars. As time progresses, the droplet gradually swallows the surrounding pillars and finally 

evolves to a wetting state at t = 215 s. 
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