Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Effect of polyacrylamide morphology templated by lyotropic liquid crystal on proton conductivity of acid hydrogels

Jia Chen, Jie Luo, Shuai Tan, Caihong Wang, and Yong Wu*

School of Chemical Engineering, Sichuan University

No. 24 South Section 1, Yihuan Road, Chengdu 610065, China

Corresponding Author

* E-mail: wuyong@scu.edu.cn

1. SEM images of freeze-dried hydrogels in absence of EBDSA

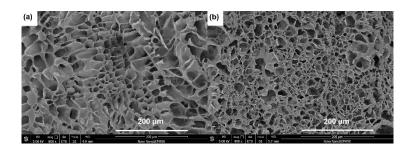


Fig. S1. SEM images of freeze-dried (a) $G_{PAM\text{-}Poly@15^{\circ}C}$ and (b) $G_{PAM\text{-}Poly@45^{\circ}C}.$

 $G_{PAM-Poly@15^{\circ}C}$ and $G_{PAM-Poly@45^{\circ}C}$ were obtained polymerizing a precursor consisting of acrylamide (13 wt%), EGDMA (0.4 wt%), and HEPK (0.1 wt%) at 15 and 45 °C, respectively.

2. Dependence of conductivity on EDBSA concentration

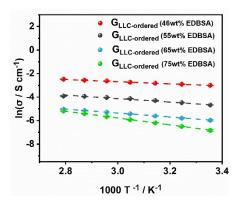
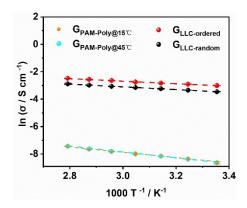



Fig. S2. Temperature-dependent proton conductivities of $G_{LLC\text{-ordered}}$ containing 55 wt%, 65 wt% and 75 wt% EDBSA, respectively.

3. Effect of DBSA on conductivity of hydrogels

 $\textbf{Fig. S3.} \ \ \text{Temperature dependent conductivities of } G_{PAM-Poly@15^{\circ}\!C}, G_{PAM-Poly@45^{\circ}\!C}, G_{LLC\text{-ordered}} \ \ \text{and} \ \ G_{LLC\text{-random.}}$