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S1 Self-Consistent Field Theory

Calculations in this work are performed using the C++ implementation of the Polymer Self-

Consistent Field (PSCFpp) software package.S1 In this section, we present the formulation of

the block copolymer self-consistent mean field theory (SCFT) implemented in PSCFpp. Our

discussion here closely follows the formalism presented alongside PSCFpp’s Fortran-based

predecessor,S2,S3 although the present discussion is specific to the diblock alloy system. More

generalized discussions of SCFT are available elsewhere.S4–S6

Using PSCFpp, we consider a system of incompressible, continuous Gaussian chain poly-

mers composed of three unique monomer types i ∈ {A,B,C}, with statistical segment lengths

bi. These monomers are coarse-grained and occupy the common monomer reference volume

v. The interaction strength between two monomers i and j 6= i is given by the Flory-Huggins

parameter χij; self-interaction of a monomer i with itself is thermodynamically neutral with

χii = 0. We consider a blend of two diblock polymer chains k ∈ {AB,B′C} with total chain

degrees of polymerization NAB for the AB chain and NB′C for the B′C chain. These total

degrees of polymerization represent the sum of the degrees of polymerization of their con-

stituent blocks such that NAB = NA+NB is the sum of NA A-monomers and NB B-monomers

while NB′C = NB′ + NC is the sum of NB′ B-monomers and NC C-monomers. In the blend,

the overall volume fractions of the AB and B′C polymers are φAB and φB′C = 1−φAB, respec-

tively. The requirement of a uniform coarse-grained monomer volume v yields an equivalence

between volume and degree of polymerization such that the volume fraction of a block within

a polymer chain is given by its degree of polymerization: fA = NA/NAB for the A-block in

the AB chain and fC = NC/NB′C for the C-block in the B′C chain. SCFT calculations in

PSCFpp are performed on a single unit-cell with periodic boundary conditions to represent

the structure throughout a macroscopic volume. This unit cell has volume V and contains

n = V/v monomers.

It is useful to note that, in the context of SCFT calculations in PSCFpp, a “monomer”

acts as a bookkeeping device and there is far more flexibility in its definition than would be
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appropriate in a synthetic or experimental context. In the SCFT formalism, a “monomer”

need not represent a single chemical repeat unit, as is typical in a synthetic context, but

instead represents the molar mass of polymer chain occupying one monomer reference vol-

ume, v.S3 In our calculations, v is chosen such that NAB = 1 which produces two convenient

outcomes. First, chain length asymmetry, NB′C/NAB, becomes numerically equivalent to

NB′C. Second, energies can be easily reported on a per-chain basis because the number of

monomers in the system, n, can be interpreted as the number of chains of length NAB. Sin-

turel et al. S7 offer a helpful discussion about mapping the SCFT parameters to those of real

polymers.

In SCFT, the many-body particle-particle interactions of the polymer melt are replaced

by a spatially varying chemical potential field acting on a representative set of non-interacting

polymer chains in the saddle-point approximation that is relevant as a mean-field description.

The potential field acting on monomer i at spatial position r is denoted by ωi(r) and given

for each monomer by

ωA(r) = χABρB(r) + χACρC(r) + ξ(r) (S1)

ωB(r) = χABρA(r) + χBCρC(r) + ξ(r) (S2)

ωC(r) = χACρA(r) + χBCρB(r) + ξ(r) (S3)

where ρi(r) is the average local volume fraction of monomer i at position r and ξ(r) is a

Lagrange multiplier enforcing the incompressibility constraint,

ρA(r) + ρB(r) + ρC(r) = 1 (S4)

Running an SCFT calculation requires that the user first provide an initial guess for ωA,

ωB, and ωC. These initial values are used to compute the partition function of each polymer
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k according to

Qk =
1

V

∫
V

dr qk(r, Nk) (S5)

where the forward propagator qk(r, Nk) represents the solution of the modified diffusion

initial value problem for chain type k,

∂qk (r, s)

∂s
=

[
b2i(s)

6
∇2 − ωi(s)(r)

]
qk(r, s), qk(r, 0) = 1 (S6)

where s ∈ [0, Nk] is the coordinate along the chain contour. The subscript i(s) on bi(s) and

ωi(s) indicate that the statistical segment length and chemical potential field will be those

corresponding to the monomer type at contour position s. More explicitly: when k = AB,

we use bA and ωA(r) when integrating over the region s ∈ [0, NA] and we use bB and ωB(r)

for integration over s ∈ [NA, NAB]; when k = B′C, we use bC and ωC(r) for integration over

s ∈ [0, NC] and we use bB and ωB(r) for integration over s ∈ [NC, NB′C].

The forward propagator qk(r, s) is a normalized partition function for the portion of chain

k on [0, s] when the chain contour segment s is constrained to position r. Under the same

positional constraint of segment s, the normalized partition function for the remainder of

chain k, [s,Nk], is given by the backward propagator q†k(r, s) which is the solution of the

modified diffusion initial value problem

− ∂q†k(r, s)

∂s
=

[
b2i(s)
6
∇2 − ωi(s)(r)

]
q†k(r, s), q†k(r, Nk) = 1 (S7)

The product of the forward and backward propagators, qk(r, s)q†k(r, s), is proportional to

the probability of finding chain contour segment s at position r.S4 This proportionality can

then be used to compute the average local volume fractions of each monomer, ρi(r), which

in turn can be used to compute the potential field for each monomer ωi(r). Details of the

local monomer volume fractions differ between the canonical and grand canonical ensembles,

and are given below in Equations S8-S9 and S13-S14 respectively.
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The circular dependence of Equations S1-S3 on Equations S8-S10 (or Equations S13-

S15) via Equations S4-S7 means that the SCFT calculation must iterate on ωi(r) from

the user-provided initial guess until these equations become self-consistent within a specified

tolerance. In our calculations, we measure error using the relative residual norm described by

Matsen S8 and converge calculations to a tolerance of 1× 10−6. Iterations are done according

to an Anderson Mixing schemeS8–S10 which optimizes unit cell parameters simultaneously

with the fieldS10,S11 to minimize stress and obtain an accurate free energy.

S1.1 Canonical Ensemble

In the canonical ensemble, system composition is specified for the system by declaring φAB

and φB′C in the input file. Using these values, and the partition functions above, the local

volume fractions of each monomer are calculated withS6

ρA(r) =
φAB

QABNAB

∫ NA

0

ds qAB(r, s)q†AB(r, s) (S8)

ρB(r) =
φAB

QABNAB

∫ NAB

NA

ds qAB(r, s)q†AB(r, s) +
φB′C

QB′CNB′C

∫ NB′C

NC

ds qB′C(r, s)q†B′C(r, s) (S9)

ρC(r) =
φB′C

QB′CNB′C

∫ NC

0

ds qB′C(r, s)q†B′C(r, s) (S10)

After these equations are solved self-consistently with those in Equations S1-S7, the

Helmholtz free energy per monomer is given byS2

F

nkBT
=

1

V

∫
dr [(χABρAρB + χACρAρC + χBCρBρC)− (ωAρA + ωBρB + ωCρC)]

+
φAB

NAB

(
ln
φAB

QAB

− 1

)
+
φB′C

NB′C

(
ln
φB′C

QB′C
− 1

) (S11)

where kBT is the Boltzmann constant and T is the absolute temperature.
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S1.2 Grand Canonical Ensemble

Instead of system composition, calculations in the grand canonical ensemble specify the

dimensionless chemical potential of the AB and B′C polymers (µAB/kBT and µB′C/kBT ,

respectively). These chemical potentials are related to the overall volume fractions byS6

exp

(
µk

kBT

)
Qk = φk (S12)

This relation, combined with incompressibility of the system, means that µAB/kBT and

µB′C/kBT are not independent, allowing us to set µAB/kBT = 0 throughout our calculations

while varying µB′C/kBT . The relation in Equation S12 can also be used to compute the local

volume fractions of each monomer via substitution into Equations S8-S10, giving

ρA(r) =
1

NA

exp

(
µAB

kBT

)∫ NA

0

ds qAB(r, s)q†AB(r, s) (S13)

ρB(r) =
1

NAB

exp

(
µAB

kBT

)∫ NAB

NA

ds qAB(r, s)q†AB(r, s)

+
1

NB′C
exp

(
µB′C

kBT

)∫ NB′C

NC

ds qB′C(r, s)q†B′C(r, s)

(S14)

ρC(r) =
1

NB′C
exp

(
µB′C

kBT

)∫ NC

0

ds qB′C(r, s)q†B′C(r, s) (S15)

After the calculation converges, the grand canonical free energy is given byS12

Fg = −PV (S16)

where P is the system pressure. For our alloy system, the number of AB chains, nAB, and

the number of B′C chains, nB′C, along with their respective chemical potentials can be used

to relate the grand canonical free energy to the Helmholtz free energy withS6

Fg = F − nABµAB − nB′CµB′C (S17)
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which can be combined with Equation S16 to give

PV = −F + nABµAB + nB′CµB′C (S18)

By noting that nk = nφk/Nk and non-dimensionalizing Equation S18 by dividing by nkBT ,

we obtain
Pv

kBT
= − F

nkBT
+
φAB

NAB

(
µAB

kBT

)
+
φB′C

NB′C

(
µB′C

kBT

)
(S19)

which gives the dimensionless pressure output by PSCFpp in terms of the dimensionless

chemical potentials, dimensionless Helmholtz free energy, and overall species volume frac-

tions, all of which are also reported by the program.S3

S2 Phase Coexistence

For two or more phases to be in equilibrium, they must have equal pressure and temperature,

and the chemical potential of each species in the system must be the same in all phases. In

the SCFT calculations employed here, the temperature of the system is set by the Flory-

Huggins parameter χij; therefore, the equal temperature condition for equilibrium is met as

long as calculations are done at fixed χij, regardless of the ensemble in which calculations are

performed. Establishing the equal-pressure and equal-chemical potential conditions differs

by the ensemble selected. The remainder of this section describes the methods for equilibrium

determination in the canonical and grand canonical ensembles.

S2.1 Canonical Ensemble: Common Tangent

The SCFT calculations performed here assume incompressibility of the polymers. Due to

this assumption in the canonical ensemble, the addition of a constant pressure to the system

will not change the Helmholtz free energy.S6 This means that the pressure in the canonical

ensemble is arbitrary, and the requirement of constant pressure can always be met. The
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requirement of equal chemical potential in all phases for each species is established via the

common tangent construction.S13

To numerically determine a common tangent between phases I and II, the Helmholtz

free energy data for each phase, collected at intervals of ∆φAB = 0.005, is first fit to a

cubic spline, giving the energy of each phase as a function of φAB, F I(φAB) and F II(φAB).

To ensure fidelity to the underlying data, this spline was computed with a zero smoothing

factor, which forces the curve to pass exactly through all data points.S14 The compositions

of the two coexisting phases, φI
AB and φII

AB, were then calculated numerically by seeking the

root of

f(φI
AB, φ

II
AB) =

f1(φI
AB, φ

II
AB)

f2(φ
I
AB, φ

II
AB)

 (S20)

where f1 and f2 are given by

f1(φ
I
AB, φ

II
AB) =

dF I

dφAB

(φI
AB)− F I(φI

AB)− F II(φII
AB)

φI
AB − φII

AB

(S21)

f2(φ
I
AB, φ

II
AB) =

dF II

dφAB

(φI
AB)− F I(φI

AB)− F II(φII
AB)

φI
AB − φII

AB

(S22)

The root of f(φI
AB, φ

II
AB) occurs when the slope of the tangent to each energy curve, dF i/dφAB,

is equal to the slope of the line connecting the two tangent points,
(
φI
AB, F

I(φI
AB)
)
and(

φII
AB, F

II(φII
AB)
)
, which guarantees that the points are co-linear along the common tangent.

This construction is depicted in Fig. S1.

Optimization was done with the SciPy root-finding method scipy.optimize.root us-

ing the ‘hybr’ method option, which uses a modified Powell method as implemented in

MINPACK.S15,S16 In general, we find this method to be very robust for common tangent

calculations, with most tangent calculations converging when the mid-point of each energy

curve is used as the initial guess for the respective φi
AB, which was the default initial guess

for our calculations.

When this methodology was used to choose a macrophase separation pairing for com-
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parison to the Laves phase, as done in Fig. S2 or Fig. 2 of the main text, phases I and

II represent the AB-rich and B′C-rich bcc or fcc phases. This same methodology was used

in construction of the phase diagram to determine phase boundaries along the Laves phase

field, in which case phases I and II would represent a Laves phase and one of the AB-rich or

B′C-rich phases.

Figure S1: Representative illustration of the common tangent calculation method for arbi-
trary phases I and II, using hypothetical quadratic Helmholtz free energy curves for these
phases, F I(φAB) and F II(φAB) respectively. The method iterates on the values of the coex-
istence compositions, φI

AB (phase I) and φII
AB (phase II), to find the root of Equation S20.

The solid lines are the tangents to F I(φAB) and F II(φAB) at the points
(
φI
AB, F

I(φI
AB)
)
and(

φII
AB, F

II(φII
AB)
)
, respectively. These tangent points are marked with black dots. The dashed

line connects the two tangent points,
(
φI
AB, F

I(φI
AB)
)
and

(
φII
AB, F

II(φII
AB)
)
. The slopes of the

tangent lines and the connector line are indicated on the graph algebraically as they are listed
in Equations S21 and S22. When all three slopes are equal, at the root of Equation S20,
the tangent points

(
φI
AB, F

I(φI
AB)
)
and

(
φII
AB, F

II(φII
AB)
)
will be co-linear along the common

tangent.
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S2.2 Grand Canonical Ensemble

Our approach to phase coexistence in the grand canonical ensemble follows the method de-

scribed by Matsen S17 and that used by Magruder et al. S18 in their work on conformationally

symmetric diblock alloys. Due to the incompressibility of the system, the chemical potentials

of the AB and B′C chains are not independent, allowing us to choose µAB/kBT = 0 for all

calculations. This trivially satisfies the chemical potential criteria for the AB chain. The

chemical potential value input to PSCF for the B′C chain, µB′C/kBT , is then controlled as

an independent variable and phases are compared across µB′C/kBT values (similarly to φAB

in the canonical ensemble). By controlling the value of µB′C/kBT , we thus also meet the

chemical potential criterion for B′C. The pressure of each phase as calculated with Eqn. S19

is output by PSCF following convergence of the SCFT calculation. The final equilibrium

criterion, equal pressure, is met when the Pv/kBT vs µB′C/kBT curves of the phases inter-

sect. In general, SCFT calculations were run at increments of 0.0005 in µB′C/kBT . In some

cases, however, larger sampling increments were required when large ranges of µB′C/kBT

needed to be sampled to find an intercept. These larger sampling increments were most

often needed while resolving the high-temperature regions near the ODT, where the P (µB′C)

curves of disorder and the AB-rich or B′C-rich fcc phases were nearly parallel. In these cases,

µB′C/kBT needed to be sampled over ranges up to two orders of magnitude larger than was

typically required. Regardless of sampling increment, interpolation was used to determine

the chemical potential and composition of the phases at equilibrium.

S3 Impact of Conformational Asymmetry

As discussed in the main text, we evaluated the impact of conformational asymmetry in

each of the Laves particles by simultaneously varying the chain length asymmetry and the

conformational asymmetries. At each condition conformational asymmetry and chain length

asymmetry, we ran canonical ensemble SCFT calculations at a variety of blend fractions for
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the Laves phases and a set of AB-rich and B′C-rich macrophase separation competitors. We

used the common tangent construction to determine which set of AB-rich and B′C-rich phases

made the most competitive macrophase separation pair, and compared the Laves phase

energy to this macrophase separation tangent. The results of this analysis at χN = 28.0

were reported in Figure 2 of the main text. Figure S2 reports the results of this analysis

at χN = 25.0. Unlike at χN = 28, where bcc-bcc coexistence dominated the macrophase

separation reference, here both fcc and bcc appear frequently on both ends of the macrophase

separation tangent. Aside from the more frequent appearance of fcc phases, the trends seen

here are quite similar to those reported in the main text.

Figure S2: Minimum free energy of the C14 Laves phase relative to the macrophase sep-
aration tangent line at various conformational asymmetries for (a) the AB diblock, (b)
the B′C diblock, or (c) both the AB and B′C diblocks for χABNAB = χBCNB′C = 25.0,
χACNAB = 50.0, and fA = fC = 0.20. Shaded regions indicate those in which one or both of
the AB-rich and B′C-rich fcc phases are used in the macrophase separation tangent (in place
of the corresponding bcc phase) at one or more of the conformational asymmetries studied
here.

S4 Candidate Phases

In order to generate the phase diagrams reported in the main text, we needed to consider

a variety of competitor phases in addition to the Laves phases and macrophase separation

candidates. Table S1 lists the phases considered during construction of phase diagrams. The

table contains crystallographic information, SCFT spatial discretization, and information on
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the number of particles and assignment of particles as AB or B′C micelles. As stated in the

main text, the phases considered in this work are inspired by the work of Xie et al. S19 and

match the candidate set employed by Magruder et al. S18 In constructing our phase diagram,

we have chosen to omit hexagonally close-packed spheres (hcp) from the set of candidate

phases. The hcp phase is nearly degenerate with fcc,S19,S20 and any changes (if any) it would

produce in the phase diagram would be negligible; fcc is taken to be representative of both

close-packed sphere phases.

Several of the candidate phases listed here (specifically ReO3, TiO2, CaF2, and α-Al2O3)

proved particularly difficult to converge in many regions of the phase diagram, as noted

previously by Magruder et al.,S18 and are therefore missing from many of the canonical

ensemble calculation sets. Among these phases, ReO3 proved the most problematic, as we

were unable to achieve convergence of an initial field at the desired conformational asymmetry

for either of the phase diagrams reported in this work (Figures 4 and 5 of the main text).

In the case of εBC = 1.5, we were unable to converge an initial field for α-Al2O3. Finally,

we were unable to obtain initial fields for either TiO2 or CaF2 for εAB = εBC = 1.5. In all

cases, if we were unable to obtain an initial field at the desired conformational asymmetry,

we assume the phase is highly unfavorable at the conditions being considered, and omit it

from the analysis.
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Table S1: Complete list of phases considered during generation of the phase diagrams. Table
includes the name of the phase (Phase name); the label used to identify the phase in figures
(Label Name); The crystal system and space group of the phase; the spatial discretization
used in SCFT calculations for the phase (SCFT grid size); the number of nominally spherical
particles in a unit cell of the phase (Particles per unit cell); the ratio of the number of particles
composed of AB chains to the number of particles composed of B′C chains (AB:B′C particle
ratio).

Phase name Label
name

Crystal
system

Space
group

SCFT
grid size

Particles
per unit

cell

AB:B′C
particle
ratio

MgZn2 C14 Hexagonal P63/mmc 64x64x104 12 2:1
MgCu2 C15 Cubic Fd3m 96x96x96 24 2:1

W bcc Cubic Im3m 48x48x48 2 0 or 1*
CsCl alt-bcc Cubic Pm3m 64x64x64 2 1:1
Cu fcc Cubic Fm3m 48x48x48 4 0 or 1*

Hexagonally
packed cylinders hex Hexagonal p6mm 48x48 N/A 0 or 1*

Alternating hex alt-hex Hexagonal p6mm 48x48 N/A 2:1
Inverted alt-hex (alt-hex)i Hexagonal p6mm 48x48 N/A 1:2

Nb3Sn A15 Cubic Pm3n 64x64x64 8 1:3
AlB2 AlB2 Hexagonal P6/mmm 64x64x64 3 2:1

sapphire (α-BN) α-Al2O3 Trigonal R3c 64x64x64 10 3:2
α-BN α-BN Hexagonal P63/mmc 48x48x64 4 1:1
CaF2 CaF2 Cubic Fm3m 64x64x64 12 2:1
Li3Bi Li3Bi Cubic Fm3m 64x64x64 16 3:1

Inverted Li3Bi (Li3Bi)i Cubic Fm3m 64x64x64 16 3:1
rocksalt NaCl Cubic Fm3m 64x64x64 8 1:1
ReO3 ReO3 Cubic Pm3m 64x64x64 4 3:1
σ-FeCr σ Tetragonal P42/mnm 128x128x64 30 1:2**
TiO2 TiO2 Tetragonal P42/mnm 64x64x42 6 1:2
ZnS ZnS Cubic F43m 64x64x64 8 1:1

*These structures represent the AB-rich and B′C-rich morphologies considered for macrophase separation.
All particles are composed of the majority species, with the minority located in interstitial sites.
**Particle assignment for σ is not trivial given the complexity of the structure. Here, B′C is placed in particles
with volume above the number-averaged particle volume for the phase (Wyckoff positions 4f, 8i′, and 8j) while
AB is placed in particles with volumes below this average (Wyckoff Positions 2b, and 8i), according to the
volumes computed by Reddy et al. using the diblock foam model.S21 This “above average” vs “below average”
criteria was chosen for consistency with the Laves phases, in which B′C was assigned to the larger particles.
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S5 Laves Phase Degeneracy

The main text reports that choice of Laves phase to use in the analysis would have little

impact on the results because the Laves phases are found here to be nearly degenerate in

free energy. To support this claim, Figure S3 shows the free energy of the C15 Laves phase

relative to C14 based on the canonical ensemble SCFT calculations used to generate the

phase diagram in Figure S4. We have chosen to use the C14 phase as the representative

Laves phase in our analysis because our data show that it is, within the Laves phase field,

more stable than C15. However, within this range, the total difference in the Laves phase free

energies never exceeds 1× 10−4 kBT per chain of length NAB. It is interesting to note that,

over a brief composition window at lower φAB than the Laves phase field, C15 is briefly more

stable than C14; regardless, it still remains metastable relative to macrophase separation.

Figure S3: The energy of the C15 Laves phase relative to that of C14 from canonical ensemble
SCFT data used to generate the phase diagram in Fig. 4 of the main text and Figure S4
here. The vertical dotted lines represent the bounds (in φAB) of Figure S4b and Fig. 4b,
and serve as a guide for the range relevant to the Laves phase field reported in this work.

S15



S6 Phase Diagram

In this work, most of the calculations have been done in the canonical ensemble, with the

grand-canonical ensemble reserved for resolving 3-phase coexistence and the region near the

ODT. In the canonical ensemble, system composition is specified directly via blend fractions,

which are bound on [0,1]. This naturally-bounded domain allows energy profiles (sweeps in

blend fraction with other parameters fixed, such that common tangent calculations can be

completed) to be computed in parallel at a variety of conditions without concern that the

resultant data will miss the coexistence region. In contrast, the chemical potential in the

grand-canonical ensemble is specified rather than the blend fraction. The chemical potential

is not similarly bounded, and the numerical range in which coexistence would be observed

is not known a priori. It is also not known how far the chemical potential at coexistence

may shift with changes in, for example, segregation strength or chain length. By running

canonical ensemble calculations in parallel at the desired parameter ranges (in our case,

segregation strength) we can quickly obtain results over the desired range. When additional

accuracy is needed, these initial results can then act as a guide to estimate chemical potential

values when refining three-phase coexistence or the regions near disorder.

Construction of the phase diagram reported in Figure 4 for an alloy with NB′C/NAB = 1.0

and εBC = 1.5 started with initial sets of canonical ensemble SCFT calculations followed by

common tangent constructions at χN = 23.5 (the lowest value at which the Laves phases

converged) and integer values of χN from 24.0 to 40.0 to obtain a coarse map of the phase

boundaries. Subsequent canonical ensemble, common-tangent calculations were then per-

formed at increments of 0.5 in χN around the AB-rich and B′C-rich coexistence transitions

points (such as where the AB-rich phase in coexistence with the Laves phase field changes

from fcc to bcc, or from bcc to hex). These first two rounds of calculation considered only

the Laves phases and the macrophase separation competitors. A third round of canonical en-

semble calculations added the remaining competitors at a selection of segregation strengths.

Below the transition to Laves-hexAB coexistence, competing phases were run at all sampled
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segregation strengths. Above this transition, we noticed that the AB-rich hex phase quickly

out-competes the Laves phases and suspected that it would similarly outcompete the other

sphere-forming morphologies. We chose to run the remaining competitors only at χN = 30,

χN = 40, and at odd values of χN from 31 to 39 finding that, indeed, all competitors are

similarly outcompeted by AB-rich hex with increasing χN . On the basis of this result, we

chose not to run the competing phases at the remaining χN values. Finally, grand canonical

ensemble calculations were used to refine the position of invariant points and map the region

near the ODT.

Here, Figure S4 reports the same phase diagram as Fig. 4 of the main text, but includes

the particular points used to generate the diagram. Each dot in Figure S4 represents a

point at which we have collected SCFT data. Data were collected at the highest density

near invariant points where grand canonical ensemble was used to resolve the three-phase

coexistence conditions. The reported data show that the splines used to draw the phase

boundaries introduce no anomalous shapes and broadly reflect the collected data.
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Figure S4: (a) Phase diagram for an AB/B′C alloy with NB′C/NAB = 1.0, fA = fC = 0.20,
εAB = 1.0, εBC = 1.5, and assuming purely enthalpic χ values such that χACNAB = 2 (χN)
at all T and (b) a detailed view of the Laves phase field within that phase diagram. Points
indicate conditions at which we collected SCFT data. The reference temperature, T0, was
chosen to correspond to χN = 30. Non-linear segments of the phase diagram are drawn
using cubic splines fit to the sampled data.
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