Supporting Information

A strong and tough gelatin/polyvinyl alcohol double network hydrogel actuator with superior actuation strength and fast actuation speed

*Yao-Shiyu Yao,<sup>a</sup> Sun-Xingyue Sun,<sup>b</sup> Ye-Lina Ye,\*c and Liang-Haiyi* 

Liang\*bde

<sup>a</sup>School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.

<sup>b</sup>CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.

<sup>c</sup>School of Material Science and Engineering, Anhui University, Hefei, Anhui 230601, China. Email Address: 12010@ahu.edu.cn

<sup>d</sup>School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China. Email Address: hyliang@ustc.edu.cn

<sup>e</sup>IAT-Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D printing Institute of Intelligent Equipment and Industrial Technology, Wuhu, Anhui 241200, China.

> Email: 12010@ahu.edu.cn; hyliang@ustc.edu.cn Phone: +86 (0)551 63601622. Fax: +86 (0)551 63606459



Fig.S1. (a) DSC curves of the  $PVA_{30}$  gel and the  $PVA_{30}$ -S<sub>25</sub> gel. The  $PVA_{30}$  gel was fabricated with 30 wt% PVA powder through the heating-cooling and freezing-thawing treatment. (b) The crystallinity of the  $PVA_{30}$  gel and the  $PVA_{30}$ -S<sub>25</sub> gel.



Fig.S2. Water content of the GA<sub>7.5</sub>-S<sub>25</sub> gel, the PVA<sub>30</sub>-S<sub>25</sub> gel, and the GA<sub>7.5</sub>-PVA<sub>30</sub>-S<sub>25</sub> gel before immersing in the (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> solution and after immersing in the (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> solution.



Fig.S3. (a) Tensile stress-strain curves of the GA<sub>x</sub>-PVA<sub>24</sub>-S<sub>10</sub> gel with various weight

percentages of gelatin. (b) Elastic modulus of the GA<sub>x</sub>-PVA<sub>24</sub>-S<sub>10</sub> gel. (c) Fracture energy of the GA<sub>x</sub>-PVA<sub>24</sub>-S<sub>10</sub> gel.



Fig.S4. (a) Water content of the  $GA_x$ -PVA<sub>24</sub>-S<sub>10</sub> gel before immersing in the  $(NH_4)_2SO_4$ solution and after immersing in the  $(NH_4)_2SO_4$  solution. (b) Water content of the  $GA_{7.5}$ -PVA<sub>y</sub>-S<sub>10</sub> gel. (c) Water content of the  $GA_{7.5}$ -PVA<sub>30</sub>-S<sub>z</sub> gel.



Fig.S5. (a) DSC curves of the GA<sub>7.5</sub>-PVA<sub>30</sub> gel, the EDDH and the GA<sub>7.5</sub>-PVA<sub>30</sub>-R gel. (b) The crystallinity of the GA<sub>7.5</sub>-PVA<sub>30</sub> gel, the EDDH and the GA<sub>7.5</sub>-PVA<sub>30</sub>-R gel.



Fig.S6. Swelling ratio of  $GA_{7.5}$ -PVA<sub>30</sub>-S<sub>25</sub> gel as a function of time under the stimulation of hot water at 80 °C.



Fig.S7. (a) ContractileContraction strength of 300% EDDH placed for different timewith different thicknesses as a function of stimulation time. (b) Force-displacement curves of 300% EDDH placed for different timewith different thicknesses. (c) ContractileContraction strength and output working density  $W_E$  of 300% EDDH placed for different timewith different thicknesses.



Fig.S8. (a) Elastic modulus of  $GA_{7,5}$ -PVA<sub>30</sub>-S<sub>25</sub> gel during three cycles. (b) Water content of  $GA_{7,5}$ -PVA<sub>30</sub>-S<sub>25</sub> gel during three cycles. (c) Contraction strength of 300% EDDH as a

function of stimulation time. (d) Contraction strength of 300% EDDH. (e) Forcedisplacement curves of 300% EDDH. (f) Output working density  $W_E$  of 300% EDDH.