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1 Experimental Results
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Supplementary Figure S 1: Evolution of 5CB-rich droplets after isotropic-to-
nematic transition. The sample cell was kept constant at −5◦C, with image
captures under bright-field (t =00:00:00) and subsequently cross-polarised light.
The time after the initial isotropic-to-nematic transition is displayed on the top
right corner in the format hour:min:sec. Scale bar: 20 µm.
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Supplementary Figure S2: Thermal imaging of sample microscope stage over
time. (a) Thermographic camera images (FLIR) measured on a glass sub-
strate that was placed on top of a Peltier-controlled temperature stage (Linkam,
LTS120) set to -5◦C, (b) Schematic of points (1-5) on the stage wherein the grey
area represents the cut-out aperture for transmission investigations. (c) Corre-
sponding temperature - time graph for the various measured points.

2 Theory

Our objective is to show that the nematic-isotropic phase boundary for a droplet
deviates from the one for the bulk. We consider a mixture of methanol (denoted
as the subscript m) and 5CB (denoted as the subscript 5) at the temperature
(T ), pressure (P ), and the mole fraction of methanol (xm). Below UCST, the
mixture separates into two phases: the methanol-rich phase (denoted as the
superscript (m)) and the 5CB-rich phase. The 5CB-rich phase can either be in
the nematic phase (denoted as the superscript (n)) or the isotropic phase ((i)).

We focus on the nematic-isotropic phase boundary and how this boundary
deviates from the bulk one when a droplet is formed. At the nematic-isotropic
phase transition boundary, the stability of the nematic phase is equal to the
stability of the isotropic phase. Thereafter, with an increase in temperature or
methanol, the isotropic phase becomes more stable.

As explained in Discussion, considering nematic-isotropic stability difference
of a droplet immersed within the bulk isotropic phase requires more degrees of
freedom than allowed from the conventional Gibbs phase rule. Such additional
degrees of freedom come from “the number of independent length scales influ-
encing the free energy”1 characterizing the difference between the nematic and
isotropic phases, as well as from the small size of the droplet.2 Indeed, interfacial
effects cannot be ignored for a droplet. Consequently, the surface free energy, γ
is an additional variable affecting the chemical potentials in the droplet of 5CB
and methanol in the nematic and isotropic phases, in line with the thermody-
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namics of small systems.2 Due to its small size, the pressure in the droplet P ′ is
different from that of the surroundings (P ) bulk methanol-rich phase, influenced
by the droplet size R. The pressure, surface free energy, and droplet size are in-
terlinked (a special case for a spherical droplet is the Young-Laplace equation).
Moreover, surface free energy is also dependent on composition and droplet size.
Consequently, we adopt the droplet size R and composition xm as the additional
variables, and consider the chemical potentials in the droplet as expressed as

µ
(i)
5 (T, xm, R−1), µ

(i)
m (T, xm, R−1), µ

(n)
5 (T, xm, R−1), and µ

(n)
m (T, xm, R−1) for

5CB and methanol in isotropic and nematic phases, respectively. Adopting
R−1 instead of R as a variable is convenient to consider deviations from the
bulk phase, corresponding to R−1 = 0.

With the above setup, we consider the nematic-isotropic phase boundary for
droplets. To do so, we consider the nematic-isotropic phase equilibrium for 5CB
(where α = 5 in the following equation) and methanol (where α = m in the

following equation), ∆µα ≡ µ
(n)
α − µ

(i)
α = 0 with respect to the changes in xm,

T , and R−1, expressed as δxm, δT , and δR−1, respectively, as

δ∆µα =

(
∂∆µα

∂xm

)
T,R−1

δxm +

(
∂∆µα

∂T

)
R−1,xm

δT

+

(
∂∆µα

∂R−1

)
T,xm

δR−1 = 0

(1)

(Note that the gradient of the nematic-isotropic phase boundary for the macro-
scopic system can be recovered under the equilibrium condition (δ∆µα = 0)
when R−1 = 0 is not a variable.)

Keeping the droplet size constant, we obtain the following relationship for the
phase boundary for the droplet.

δTt

δxm
=

(
∂∆µα

∂xm

)
T,R−1

∆hα

Tt

(2)

where Tt and ∆hα = Tt∆sα = −Tt

(
∂∆µα

∂T

)
R−1,xm

are the transition tempera-

ture and the partial molar enthalpy of species α, respectively. Keeping the tem-
perature constant, we obtain the following relationship for the effect of droplet
size on the nematic-isotropic boundary xm :

δxm

δR−1
= −

(
∂∆µα

∂R−1

)
T,xm(

∂∆µα

∂xm

)
T,R−1

(3)

Before considering the isotropic-nematic transition in droplets, we analyse how
methanol interacts differently with the bulk isotropic and nematic phases. Ac-
cording to the phase diagram reported by Serrano et al.,3 the nematic-isotropic
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transition temperature decreases with increasing methanol concentration, i.e.,
δTt

δxm
< 0. At constant T , the increase of xm across the phase boundary leads

to the stabilization of the isotropic phase, which means
(

∂∆µ5

∂xm

)
T,R−1=0

> 0,

since ∆µ5 is defined as nematic minus isotropic. Consequently, ∆h5 < 0 from
Eq. 3 (and ∆s5 < 0 from the equilibrium condition), meaning that both the
molar enthalpy and entropy of 5CB are lower in the nematic phase than in the
isotropic phase, which is a plausible result.

Because of the Gibbs-Duhem equation, the chemical potential changes of
5CB and methanol have the opposite signs in the bulk nematic and isotropic
phases, considering the equilibrium with the surrounding bulk methanol-rich
phase at a given temperature and pressure. Consequently, we expect(

∂∆µm

∂xm

)
T,R−1=0

< 0 for methanol. This sign can also be justified from the

less favourable methanol-nematic interaction energy compared to the isotropic,
∆hm > 0, in combination with Eq. 2. These signs are used in the Discussion
to infer how the droplet size affects nematic-isotropic transition.

3 Simulations: Model and phase diagram

To simulate the formation and motion of defects in LC droplet systems, we re-
quire a model that is computationally tractable rather than chemically detailed,
so that we can investigate both the large system sizes necessary to represent a
droplet with an ordered interior and also to allow for simulations long enough
such that the defects that may form within the droplet interior can move in a
physical way. We have therefore used a simple soft core repulsive model based
on spheres of diameter σ with an embedded short-ranged attraction to repre-
sent a small volume that is either LC rich or solvent (MeOH) rich. There are
certain physical features of the phase diagram and droplet behaviour that allow
us to parameterise the interactions between the two types of fluid volumes. The
two types should be predominantly (but not totally) immiscible at lower tem-
peratures but partially miscible at higher temperatures, the attractions for the
LC model must be anisotropic to ensure the possibility of an aligned phase at
low enough temperature and similarly the LC–solvent interactions must allow
for tangential ordering at the interface between the LC-rich minority nematic
phase and the solvent-rich majority isotropic phase. We define our model for
the solvent–solvent interactions as:

USS(r ij) =
ϵ′SS

σ2
(σ − rij)

2 − ϵSSf(rij) (4)

for rij < σ, in which r ij and rij are the vector and the distance between a
pair of particles i and j. The first term is a soft repulsive sphere, typical of
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the form used in many dissipative particle dynamics simulations4,5; the second
term is a weak short-range attraction chosen with a form such that it does not
overwhelm the repulsion at low rij . ϵ′SS and ϵSS govern the strengths of the
solvent–solvent repulsive and attractive interactions respectively, and f(rij) is a
Gaussian function centred towards the outer edge of the particle at 0.75σ that
decays essentially to zero within rij < σ:

f(rij) = exp

(
−1

2

(rij − 0.75σ)2

(0.075σ)2

)
. (5)

We can similarly define the LC-LC interactions using an anisotropic modification
to the attraction part of the potential:

ULL(r ij , û i, ûj) =
ϵ′LL

σ2
(σ − rij)

2 − ϵLL(û i · ûj)
2f(rij) (6)

where û i is a unit vector describing the orientation of particle i. Finally, inter-
actions between unlike particles are defined as:

ULS(r ij , û i) =
ϵ′LS

σ2
(σ − rij)

2 − ϵLS(û i · r̂ ij)
2f(rij) (7)

where the anisotropic term tends to assist tangential alignment at the interface
between a LC-rich nematic and a solvent-rich isotropic phase. To ensure similar
compressibilities for the LC and solvent phases, we set ϵ′LL = ϵ′SS to ensure the
compressibility of the solvent is similar to that of the mesogen and to ensure
(partial) immiscibility, ϵ′LS > ϵ′SS . Varying ϵLL with respect to ϵSS varies
the strength of the LC-LC attractions and so the nematic–isotropic transition
temperature in a pure system can be controlled via this parameter. Similarly,
the values of ϵLS and ϵ′LS can be varied to adjust the anchoring at interfaces
and the miscibility of the components and hence the coexistence compositions,
as well as the critical point in the phase diagram. The potential energy plots
for the parameter set ϵ′LL = 20ϵ,ϵ′LS = 25ϵ, ϵ′sS = 20ϵ, ϵLL = 2ϵ, ϵLS = 2ϵ and
ϵSS = ϵ where ϵ is an energy parameter are shown in Fig. S3 and the resulting
phase diagram in Fig. S4.

We note that the form of the interactions that could lead to the required
phase behaviour and properties is not unique. For example, phase separation
between two (isotropic) species can be achieved through purely repulsive in-
teractions, so long as the mixed interaction is more repulsive than the like
interactions. Liquid crystallinity can then be introduced by have the repulsive
interaction between orthogonally aligned particles to be larger than for par-
allel aligned particles. However, this implies that the compressibility of the
nematic phase that such a parametrisation forms would be less than that of
the isotropic phase which is less satisfactory. Similarly, the model would need
to account for anchoring at the surface and again varying this through a single
repulsive parameter would mean lowering the overall repulsive interaction for a
solvent region approaching a nematic region end-on compared to side on. We
therefore use the attractive regions confined to the periphery of the soft spheres
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Supplementary Figure S3: Potential energy curves with parameters ϵ′LL = 20,
ϵ′LS = 25ϵ, ϵ′sS = 20ϵ, ϵLL = 2ϵ, ϵLS = 2ϵ and ϵSS = ϵ. Thin lines
- solid: LC-LC (û i · ûj = 1), dashed: LC-LC (û i · ûj = 0), dotted: S-S. Thick
lines - solid: LC-S (û i · r̂ ij = 1), dashed: LC-S (û i · r̂ ij = 0).

while retaining similar repulsive interactions for all orientations for significantly
overlapped particles.

The phase diagram was obtained using semi-grand canonical Monte Carlo
simulations of 12288 soft-core particles in a simulation box of size (16σ)3, giving
an overall particle density of ρ∗ = ρσ3 = Nσ3/V = 3, similar to the densities
used in dissipative particle dynamics with similar soft sphere potentials4,5. A
series of simulations were run at constant temperature in which the fugacity
fraction of the LC species was varied so that the identities of the particles, and
hence the overall composition, can change6. Identifying the discontinuities in
the equation of state generated at each temperature allows us to determine the
coexistence densities of the two phases at equilibrium as a function of temper-
ature.

In order to parametrise the model, the repulsive parameters ϵ′LL, ϵ
′
SS and

ϵ′LS were fixed while ϵLL and ϵLS were varied to ensure that we observe both
isotropic–isotropic and nematic–isotropic phase coexistence in a binary system
as a function of temperature and that the critical point for I1-I2 coexistence
was not significantly higher than the NI transition. If the immiscibility is high
leading to strong phase separation, the two phases are essentially immiscible and
there is no difference in the coexistence compositions for I1-I2 a little above and
N-I2 a little below the triple point; the phase diagram is essentially pure mesogen
on the left hand side and pure solvent on the right. The partial miscibility is
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Supplementary Figure S 4: Phase diagram of the model system showing
isotropic–isotropic I1-I2 coexistence at higher temperatures and nematic–
isotropicN -I2 coexistence at lower temperatures. Here, ρ∗ is the solvent density.
Since the total particle density is 3, this can be divided by 3 to give the solvent
composition(s) at the boundaries. T ∗ is a reduced temperature, defined in terms
of the energy parameter ϵ as T ∗ = kT/ϵ.

clearly a key factor of this system, different to other oil in water type droplets.
Simulations of a planar slab were also run to ensure that the choice of ϵLL

and ϵLS led to homeotropic (tangential) alignment at the interface.
With the phase diagram determined and found to be comparable with ex-

perimental results3, we construct a LC-rich isotropic droplet in an solvent-rich
majority phase at T ∗ = kT/ϵ = 1.375, just above the triple point in the bulk
phase diagram, with the appropriate compositions for the droplet and exterior
read off from the phase diagram. 862488 particles were placed at random po-
sitions inside a box of dimensions (66σ)3 and any particles within 29σ of the
centre of the box are determined to be inside the droplet and assigned their
identity with a probability such that the overall composition of the droplet is
equal to that of the minority phase I1 at this temperature. Those particles out-
side the droplet are assigned their identity such that the external composition is
that of the majority phase I2. Canonical Monte Carlo simulations were then run
at T ∗ = 1.375 to equilibrate the isotropic droplet. Once equilibrated, the tem-
perature was reduced below the triple point to T ∗ = 1.275 such that the droplet
enters the region of the phase diagram exhibiting a minority nematic phase in
coexistence with a majority solvent-rich phase. Note, similar simulation runs at
other temperatures were performed but gave a similar series of results. The di-
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rector structure and any defects formed were monitored using parameters based
on Westin matrices7,8. Although Monte Carlo is strictly a stochastic rather than
a time-dependent simulation method, the pathway followed should be similar to
that in a time-dependent simulations as only localised movements are allowed;
more drastic trials that are non-physical, such as the swapping of identities of
particles that are far away from each other or the transfer of particles deep in
the middle of the droplet into the majority phase, are not used as these would
deviate from the expected pathway. Indeed, the pathways for disclination lines
in simulations of lattice models for liquid crystal droplets have been shown to
be similar to those of real LC droplets9.

4 Simulations: Defect formation and motion

In Fig. S5, the defect configuration at the end of a higher temperature run
(T ∗ = 1.325) is shown a short time after the inner droplet has been expelled
and the simulation droplet has transformed into the axial configuration.

Supplementary Figure S5: The axial director field some time after the inner
droplet was expelled, run at T ∗ = 1.325.

9



References
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