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1 Numerical Details
NPT Monte Carlo (MC) simulations are performed on systems
made of N = 1296 particles for the Isotropic phase, and N = 2400
colloids for the phases that are expected to be ordered (see Ap-
pendix 2).

Each MC step consists either in a volume move, a change
in either position or orientation of one particle. Each volume
move has a 1/N probability, translational or rotational moves are
equally probable. Volume moves consists in the random selec-
tion and variation of one of the box sides. The random selection
induces anisotropic changes in volume. Such an anisotropy is
needed to avoid the introduction of artificial order in the system
and to ease the formation of mesophases1. Periodic boundary
conditions are used. Up to 6×106 MC steps have been performed
to obtain the computational results, discarding the initial equili-
bration of the systems.

2 Initial configurations
To introduce polydispersity in the studied systems, the initial con-
figurations were generated by combining HSCs of diverse lengths
and/or diameters according to truncated or inverse truncated
Gaussian probability distributions. We hence introduced the Poly-
dispersity Index PIX = ∆X/X̄ , with X = (L,D,A) and ∆X the max-
imum deviation from the average X̄ . The standard deviation
σX = ∆X/1.177 was chosen to have ∆X corresponding to the half
width at half maximum of the Gaussian distributions. To study
the low pressure phase space, four types of polydispersities, with
either 0.5 or 0.75 as PI, were studied:

• L is modeled as a truncated Gaussian and D is uniform (GL),
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A results as a truncated Gaussian (PIL = PIA ∈ (0.5,0.75));

• L is uniform and D is modeled as an inverse truncated
Gaussian (IGD), A results as a truncated Gaussian (PIA ∈
(0.5,0.75));

• L is uniform and D is modeled as a truncated Gaussian (GD),
A results as an inverse truncated Gaussian (PID ∈ (0.5,0.75));

• both L and D are modeled as truncated Gaussian (GL,D),
A results as an inverse truncated Gaussian (PIL = PID ∈
(0.5,0.75)).

For each case, L̄ (or D̄) is tuned in order to have Ā =∫
Pd(D)Pl(L)(L/D)dD dL of fixed values.
To study the high pressure region of the phase space (P∗ > 1),

we narrowed the analysis to the first two cases (namely, GL and
IGD) with PIA = 0.5, which are representative of all the other
ones.

In figure S1 the distributions employed to model the polydis-
persity for the case of Ā = 5 and PI = 0.5 are reported.

For the low pressure cases (P∗ ≤ 1), the HSCs are initially ar-
ranged in a orthorhombic lattice by placing (18, 18, 4) particles
for each side of the box (N=1296). The intermolecular distances
are set as~a = 1.01(Dmax,Dmax,Lmax+Dmax), where Dmax and Lmax

are the maximum diameter and length of the particles in the sys-
tem (namely, Xmax = X̄ +∆X).

For the high pressure cases (P∗ > 1), (20,20,6) HSCs are placed
in a orthorhombic lattice (N=2400), as described before. Then,
to ease the equilibration, particles are systematically moved closer
till overlapping. In Fig. S2 are reported three examples of initial
configurations of systems with Ā = 5 at high pressure obtained via
the aforementioned procedure.

3 Analysis of ṽ
We report in table S1, the v0, v̄excl and ṽ computed on the distri-
butions described in the Appendix 2 (see equations 3, 11) for
the Ā = 5 systems.

We tested the dependence of ṽ upon the choice of the distribu-
tion used to model the polydispersity in length. To this aim, we
chose two different distributions that are not symmetrical with
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Fig. S1 Histograms of A, L and D values for the configurations of the
simulated HSCs employed to model polydispersity in length, diameter
or both, for the case of average aspect ratio equal to 5 with PI of 0.5.
Snapshots of the corresponding equilibrium configurations at P∗ = 1 are
also reported. Panel (a) IGD, panel (b) GL, panel (c) GD, panel (d) GL,D.

Fig. S2 Snapshots of the initial configuration of systems with Ā = 5 for
the monodisperse (a), GL (b), and IGD (c) cases after the compaction
procedure.

respect to the average value of L; namely we employed an in-
creasing and decreasing truncated linear distribution chosen so
that the polydispersity PIL = 0.5 so that Ā = 5 (Case I and Case
II, see S3). As reported in Table S2, while the values of v̄0 and
v̄excl vary for the different distributions, ṽ is always equal to the
monodisperse corresponding case.

4 Isotropic EOS of the systems for all the elonga-
tions

In fig. S4 the EOS of the polydisperse systems studied at P∗ ≤ 1
(see Appendix 2) are reported for Ā = (1,2,2.5,3,4,5). Fig. S5
shows the qualitative agreement between Parsons-Lee theory and
simulations for the studied systems in the isotropic phase.

Table S1 v̄excl, v̄0 and ṽ computed analytically via Mathematica for the
Ā = 5 case (see Appendix 2 for the nomenclature of the system types)

System type v̄excl v̄0 ṽ
Monodisperse 74.875 4.451 16.824
GL (PI = 0.5) 74.875 4.451 16.824
GL (PI = 0.75) 74.875 4.451 16.824
GD (PI = 0.5) 68.334 4.517 15.128
GL,D (PI = 0.5) 68.334 4.517 15.128
IGD (PI = 0.5) 86.725 5.835 14.863
GD (PI = 0.75) 58.226 4.437 13.124
GL,D (PI = 0.75) 58.226 4.437 13.124
IGD (PI = 0.75) 116.000 10.008 11.591

Table S2 v̄excl, v̄0 and ṽ computed analytically via Mathematica for Ā = 5
when asymmetrical distributions are considered

System type v̄excl v̄0 ṽ
Monodisperse 74.875 4.451 16.824
Case I 95.196 5.658 16.824
Case II 57.672 3.428 16.824
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Fig. S3 Asymmetrical probability distributions Pl(L) (used for the polydis-
perse L and monodisperse D case). We chose to model the L distribution
with two probabilities that are not symmetrical with respect to the av-
erage value L̄ to assess that the asymmetry (or symmetry) in Pl(L) does
not have any effect on the value of ṽ. As L̄ 6= Ā, the two L distributions
reported are normalised by two different values of D so to grant Ā = 5 for
both cases.

5 Comparison between theoretical and computa-
tional EOS in the nematic phase

For the monodiperse case, the GL (PIL = 0.5) and the IGD (PIA =

0.5) cases, we calculated the theoretical EOS for the packing frac-
tions corresponding to the nematic phase and compared them
with the corresponding computational results, as reported in fig-
ure S6.

6 Standard, three-dimensional and orientational
distribution functions

In figure S7 the standard, three-dimensional and orientational
distribution functions g(r), g3D(r) and g2(r) are reported to ex-
emplify the emergence of order in the phase space of HSCs with
different polydispersities.

The standard radial pair distribution function g(r) is defined as:

g(r) =
1

4πρr2N ∑
i

∑
j 6=i

δ (r− ri j)
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Fig. S4 EOS of the systems for the cases of Ā = (1,2,2.5,3,4,5) as
computed from MC simulations for the monodisperse (blue circles), GL
(PIL = 0.5) (orange diamonds), GL (PIL = 0.75) (green squares), GD
(PID = 0.5) (red crosses), GL,D (PIA = 0.5) (purple downward triangles),
IGD (PIA = 0.5) (brown upward triangles), GD (PID = 0.75) (pink left-
ward triangles), GL,D (PIL,D = 0.75) (gray rightward triangles), and IGD
(PIA = 0.75) (olive plus symbols).

Fig. S5 Qualitative agreement between theory and MC simulations in
the case of Ā = 1 (a) and Ā = 5 (b) for monodisperse (blue circles),
GL (PIL = 0.5) (orange diamonds), GL (PIL = 0.75) (green squares), GD
(PID = 0.5) (red crosses), GL,D (PIA = 0.5) (purple downward triangles),
IGD (PIA = 0.5) (brown upward triangles), GD (PID = 0.75) (pink leftward
triangles), GL,D (PIL,D = 0.75) (gray rightward triangles), and IGD (PIA =

0.75) (olive plus symbols). Full lines show Parsons-Lee calculation for
the respective system.

where ρ is the density of the system, N is the number of particles,
ri j is the modulus of the distance between the center of mass of
the particles i and j and δ (r−ri j) is the Dirac function which gives
1 if r = ri j.

Analogously, the three-dimensional pair distribution function
is:

g3D(r) =
1

ρN

〈
N

∑
i=1

∑
j 6=i

δ
(
r− (ri− r j)

)〉

Fig. S6 EOS of the systems in the case of Ā = 5 as computed from MC
simulations (symbols) and the corresponding theoretical evaluations (full
lines) for the monodisperse case (a), GL PIL = 0.5 (b) and IGD PID = 0.5
(d), respectively. The phases are differently colored: Isotropic I (green),
Nematic N (cyan), Smectic Sm (yellow), Columnar Col (orange), Crystal
K (purple).

When analysing ordered phases, different correlation emerges
according to the plane observed. For instance, in the ordered
phases, by choosing the z-axis to be parallel to the nematic one,

Journal Name, [year], [vol.],1–7 | 3



correlations in planes perpendicular and parallel to it are ob-
served by computing g(x, y, 0) and g(0, y, z), respectively.

The orientational radial pair distribution function g2(r) unveils
an eventual angular correlation between couple of particles as a
function of the distance r between their centres of masses:

g2(r) = 〈P2(cos(θi j(r))〉

where P2 is the second order Legendre polynomial
P2(cos(θi j(r)) = (cos2(θi j(r)) − 1)/2, cos(θi j(r)) = uuui · uuu j, and
θi j(r) is the angle between the main axes uuui and uuu j of the i-th and
j-the particles.

These functions provide information over both the arrange-
ment and alignment of the particles one with respect to the other.

Fig. S7 Standard, three-dimensional and orientational distribution func-
tions g(r), g3D(r) and g2(r) as resulting from representative MC sim-
ulations of HSCs systems in the Isotropic (first row), Nematic (second
row), Smectic (third row), Columnar (fourth row), and Crystal (fifth row)
phases.

7 Theory comparison
Figure S8 shows the difference ∆φ = φmono − φpoly between the
equilibrium packing fraction obtained for the monodisperse and
all polydisperse cases for Ā = (1,5). From the data is apparent
that ∆φ is reproduced quantitatively by the theoretical approach
for PI = 0.5.

Such a quantitative result renders the theoretical prediction a
simple and powerful predictive tool. In fact, by having knowledge
of the EOS for a monodisperse reference system (as, for instance,
obtained from an MC simulation or from literature), by applying
the generalised Parsons-Lee theory (Equation 14) with the val-

Fig. S8 Quantitative theory agreement. Packing fraction difference ∆φ

between the polydisperse cases and the monodisperse one for the different
systems analysed in this work for Ā = 1 (a) and Ā = 5 (b). Polydisperse
systems are: GL (PIL = 0.5) (orange diamonds), GL (PIL = 0.75) (green
squares), GD (PID = 0.5) (red crosses), GL,D (PIA = 0.5) (purple downward
triangles), IGD (PIA = 0.5) (brown upward triangles), GD (PID = 0.75)
(pink leftward triangles), GL,D (PIL,D = 0.75) (gray rightward triangles),
and IGD (PIA = 0.75) (olive plus symbols).

ues of v̄0 and v̄excl corresponding to the target polydispersity, it
is possible to compute the EOS of the polydisperse system. As an
example in figure S9, this combined theoretical-computational re-
sult is reported for the case of Ā = 5 with diameter polydispersity
(that is, IGD and PIA = 0.5). Apparently this result is in excel-
lent agreement with that obtained computationally from the MC
simulations of the IGD and PIA = 0.5 system.

Fig. S9 Theoretical prediction of the EOS of a system with polydisper-
sity in diameter (IGD system with PIA = 0.5). The reported EOS refer to:
the reference monodisperse case obtained either computationally (blue
circle) or theoretically (blue line), the system with target polydispersity
theoretically obtained (green line), the system with target polydispersity
obtained by mean of the combined theoretical-computational approach
(red line) and those computationally obtained (green square). The agree-
ment between the last two curves is apparent.
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8 Theoretical I-N Transition
Figure S10 shows the I-N theoretical transition computed for all
of the polydisperse cases as a function of Ā. It clearly appears that
the introduction of a length polydispersity does not shift the I-N
transition towards higher φs in all cases analysed.

Fig. S10 Theoretical I-N transition as a fuction of Ā for systems:
monodisperse (blue circles), GL (PIL = 0.5) (orange diamonds), GL
(PIL = 0.75) (green squares), GD (PID = 0.5) (red crosses), GL,D (PIA = 0.5)
(purple downward triangles), IGD (PIA = 0.5) (brown upward triangles),
GD (PID = 0.75) (pink leftward triangles), GL,D (PIL,D = 0.75) (gray right-
ward triangles), and IGD (PIA = 0.75) (olive plus symbols).

9 Fractionation Analysis
To assess whether the analysed systems would present any frac-
tionation, we computed the relative probability that two particles
with specific Li and L j or Di and D j are at a given relative dis-
tance. To do this we computed probability g(r,Xi,X j) of finding a
particle of kind X j at a distance r from a particle Xi:

• we chose a specific particle with a specific length L̄ amongst
the ones defined by the Pl(L) distribution. Defining shells
of increasing width centered around the selected particle,
we estimate the distribution of particle lengths within each
shell. This process has been performed for 7 different
lengths L̄ for all aspect ratios and all packing fractions (be-
low and above the I-N transition)

• we performed the same calculations for particles having a
diameter D̄ ∈ [Dmin,Dmax]. This process has been performed
for 7 different lengths D̄ for all aspect ratios and all packing
fractions (below and above the IN transition)

The distributions gathered through such an approach mirror the
length (and/or diameter) distribution defined by Pd(D) and Pl(L)
(see respectively fig. S11 and fig. S12). Neither the isotropic
phase, nor the nematic one, neither the choice of any specific
value for D of for L favours any specific combination of lengths or
diameters for given distances between particles. No subclusters
that could be identified by a selection of L or D can be identified,
thus no significant fractionation can be appreciated in the system.

It is interesting to analyse the behaviour of the orientational
distribution function of the whole system, by dividing the differ-

Fig. S11 Probabilities g(r,Li,L j) for configurations of polydisperse L sys-
tems with Ā = 5 in the isotropic phase (left column), around the I-N
transition (middle column) and nematic phase (right column). The first
row represents the distribution used for generating the initial configu-
ration. To set the L value identifying the particles around which the
probability was computed, the L distribution was divided in 7 sub popu-
lations. Low L indicates that the particles around which the probability
is computed are the ones with the smallest value of L amongst the 7
sub populations; Mid L indicates that the particles around which the
probability is computed are the ones with the intermediate value of L
(LMID = 1/2(LLOW + LHIGH); High L indicates that the particles around
which the probability is computed are the ones with the highest value of
L amongst the 7 sub populations chosen.
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Fig. S12 Probabilities g(r,Xi,X j) for nematic configurations of polydis-
perse D (left column) and polydisperse L (right column) systems with
Ā = 5. Each graphic represents the probability to find a particle with a
certain value of D or L (y axis) at a given distance r (x axis). The first row
represents the distribution used for generating the initial configuration.
To set the X value (where X could be either L or D) identifying the par-
ticles around which the probability was computed, the X distribution was
divided in 7 sub populations. Low X indicates that the particles around
which the probability is computed are the ones with the smallest value
of X amongst the 7 sub populations; Mid X indicates that the particles
around which the probability is computed are the ones with the interme-
diate value of X (XMID = 1/2(XLOW +XHIGH); High X indicates that the
particles around which the probability is computed are the ones with the
highest value of X amongst the 7 sub populations chosen.

Fig. S13 Probability density for the angle between the main axis of
the particles and the nematic one computed for LLOW (blue circles), LMID
(orange diamonds), and LHIGH (green squares) for the case Ā = 5 at the I-
N transition (P∗ = 6). The corresponding α(D̄,L) are: α(D̄,LLOW) = 5.30,
α(D̄,LMID) = 13.32 and α(D̄,LHIGH) = 18.93, while the average value of α

computed with the total distribution is αTOT = 12.85, and the α weighted
with the populations of the different particles is αW = 12.60. With D̄ we
indicate that all distributions are obtained for a fixed value of D

ent contributions arising from different groups of particles. To
identify the sub groups, we proceeded as done for the proba-
bilities reported in Fig.S11 and Fig.S12 i.e. we divided the L
(or D) distributions in 7 sub populations. We then considered
3 groups, namely Low L (or D) indicating the smaller value of L
(or D) amongst the 7 sub populations; Mid L (or D) is defined as
LMID = 1/2(LLOW+LHIGH); High L (or D) as the particles with the
highest value of L (or D) amongst the 7 sub populations chosen.

We hence computed the probability density for the angle be-
tween the main axis of the particles and the nematic one for each
of the 3 sub groups for L (see Fig.S13), and for D (see FigS13).

It appears immediately that particles defined by smaller values
of L as well as smaller values of D (for fixed values of Ā) are less
aligned to the nematic axis.
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Fig. S14 Probability density for the angle between the main axis of the
particles and the nematic one computed for DLOW (blue circles), DMID
(orange diamonds), and DHIGH (green squares) for the case Ā = 5 at the
I-N transition (P∗ = 6.8). The corresponding α(D, L̄) are: α(DLOW, L̄)) =
4.45, α(DMID, L̄)) = 7.21 and α(DHIGH, L̄)) = 8.80, while the average value
of α computed with the total distribution is αTOT = 5.82, and the α

weighted with the populations of the different particles is αW = 5.77.
With L̄ we indicate that all distributions are obtained for a fixed value of
L
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