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I. LIME EXPERIMENTS

Certain instruments and materials are identified in this
paper to adequately specify the experimental details.
Such identification does not imply recommendation by
the National Institute of Standards and Technology; nor
does it imply that the materials are necessarily the best
available for the purpose.

A. Materials

Polydimethylsiloxane (PDMS, Sylgard 184) was pur-
chased from Dow Chemicals. 20 cm x 40 cm glass cover
slips were purchased from Corning Glass.

B. Ablation Target Preparation

Ablation targets were prepared by first sputter coating
30 nm of gold on a glass cover slip. Next, PDMS was
mixed, degassed for 30 m, and subsequently deposited
via spin-coating between 99 to 315 rad/s for 90 seconds
to form an elastomeric layer (10 to 60 µm). The deposited
films were further degassed for another 30 m and finally
thermally cured at 70 ◦C for 2 h.

C. Laser-induced membrane expansion (LIME)
test

A pulsed diode-pumped solid-state infrared laser
(Flare NX, λ = 1030 nm, pulse length = 1.5 ns, Co-
herent Inc) was focused on the gold layer of an ablation
target. An ultra-fast camera (Specialized Imaging Ltd,
SIMD12) was used to capture the membrane expansion
process with 20 ns exposure time per frame and an in-
terframe time of 140 ns (10, 22, 35, and 45 µm films) or
340 ns (60 µm films). The camera has a maximum of 12
frames and error of the camera is ± 3 ns. Synchronization
of the ablation event and image acquisition was achieved
via digital triggers modulated using a digital waveform
generator (NI-9402, National Instruments). Each image
collected was subjected to background subtraction and
thresholding to eliminate noise using ImageJ. The po-
sition of the expanding membrane was measured using
Tracker Video Analysis and Modeling Tool. The radius

reported was that of a hemispherical cap, with each im-
age captured being taken as a cross-section of that cap.
The radius itself was taken as the center point of the
membrane to the furthermost point on the cross-section
in the vertical direction, measured along the center axis.

II. BUCKINGHAM Π ANALYSIS FOR
MEMBRANE INFLATION

A. Bubble Expansion in the Absence of a
Membrane

The theoretical maximum rate of expansion of a bubble
due to laser ablation is analogous to the expansion of a
shock wave in a nuclear explosion. In a nuclear explosion,
there is an instantaneous release of energy U in a small
region of space. This produces a spherical shock wave,
with the pressure inside the shock wave several thousands
of times greater than the initial air pressure, which can
be neglected.
Using Buckingham Π analysis, we can relate the ra-

dius (R) of this shock wave to time (t). The relevant
parameters are U , R, air density (ρm) and t. Thus,

R = R
(
U, ρm, t) (S.1)

There are n = 4 physical variables and j = 3 dimensions,
and therefore 3 repeating variables. Thus, there are n−
j = 4− 3 = 1Πi group. Table I summarizes the variables
and the corresponding dimensions.

Variable Description Dimensions
R radius of blast [L]
U blast energy [ML2/T2]
ρm air density [M/L3]
t time [T]

TABLE I. Variables and corresponding dimensions for bubble
expansion in an air medium.

The first and only Πi group is defined as,

Π1 = RUαρβmt
γ

= [L][ML2/T2]α[M/L3]β [T]γ
(S.2)

Note that since j = 3, there are 3 repeating variables.
We are interested in solving for R, we do not want to
have R as one of the repeating variables. From Eq.(S.2),
we can develop a system of equations to determine the
power law coefficients.

[L][ML2/T2]α[M/L3]β [T]γ = [L]0[M]0[T]0 (S.3)

[L] : 1 + 2α− 3β = 0 =⇒ α = −1/5

[M] : α+ β = 0 =⇒ β = 1/5

[T] : −2α+ γ = 0 =⇒ γ = −2/5

(S.4)

Therefore, Eq.(S.2) becomes,

Π1 = RU−1/5ρ1/5m t−2/5 (S.5)
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Solving for R, we obtain the classic relationship for
Taylor’s blast,

R = c0

(
U

ρm

)1/5

t2/5 (S.6)

B. Bubble Expansion within a Semi-infinite Elastic
Medium

This section discuss the relevant parameters for seeded-
laser induced cavitation experiments Here, the radius R
of this bubble is related to the previous parameters of U ,
ρp, t as well as the tension of the membrane (γel), which
has units of force/length and is related to the strain en-
ergy density (Wel) and thickness of the membrane (h).
Since the medium is semi-finite, h is not a relevant pa-
rameter. Thus,

R = R
(
U, γel, ρp, t) (S.7)

There are n = 5 physical variables and j = 3 dimen-
sions, and therefore 3 repeating variables. Thus, there
are n− j = 5− 3 = 2Πi groups. Table II summarizes the
variables and the corresponding dimensions.

Variable Description Dimensions
R radius of cavitation [L]
U blast energy [ML2/T2]
γel membrane tension [M/T2]
ρp membrane density [M/L3]
t time [T]

TABLE II. Variables and corresponding dimensions for bub-
ble expansion within a semi-infinite elastic medium.

For Π1, we choose U, ρp, t as the 3 repeating variables
and R as the dependent variable. The result is simply
Eq.(S.5),

Π1 = R

(
ρp
U

)1/5

t−2/5 (S.8)

For Π2, we choose U, ρp, t as the 3 repeating variables
and γel as the dependent variable.

Π2 = γelU
αρβpt

γ

= γelU
−3/5ρ−2/5

p t4/5
(S.9)

Buckingham Π theorem tells us that Π1 = Φ(Π2). Ex-
perimentally, we know that R ∼ tα at short times, and
R ∼ t−β at long times. Therefore, Φ(Π2) = c1 when
R < Rc, and Φ(Π2) = We∗ when R > Rc. Here, We∗ is
similar to a Weber number, which compares the impor-
tance between inertia and interfacial tension, except here
we are dealing with interfacial tension due to elasticity
of the material. One possible solution is,

c1Π1 + c2Π2 = c3 (S.10)

Substituting the above expressions in Eq.(S.10), we ob-
tain,

R = c1

(
U

ρp

)1/5

t2/5 − c2

(
γel

U3/5ρ
2/5
p

)
t6/5 (S.11)

Eq.(S.11) suggests that the inertia dominates the cavi-
tation process at short times or when R < Rc, and mem-
brane tension (γel) dominates the expansion process at
long times or when R > Rc. In a laser ablation exper-
iment, the laser power is a fixed quantity, therefore, c1,
c2, U and ρp are constants. Hence, we should be able to
determine the density of the medium at short times and
elasticity of the medium by relating R to t at long times.
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FIG. S1. Radius of expanding bubble (R) as a function time
(t) for laser-induced cavitation (LIC) of air and elastomer. At
early times, the growth of both kinds of bubble is dominated
by inertia of the medium. Only at late times is the bubble
growth affected by the elasticity of the elastomer.

C. Bubble Expansion of a Thin Membrane

Using the insights gained from the previous section, we
can develop scaling relationships for the rapid expansion
of a thin elastomeric membrane that was initially flat.
The radius of the expanding membrane is related to the
following variables,

R = R
(
h, U, γel, ρm, ρp, t) (S.12)

There are n = 7 physical variables and j = 3 dimensions,
and therefore 3 repeating variables. Thus, there are n−
j = 7− 3 = 4Πi groups as summarized in Table III.
For Π1, we choose again U, ρp, t as the 3 repeating vari-

ables and R as the dependent variable, which is Eq.(S.5),

Π1 = R

(
ρp
U

)1/5

t−2/5 (S.13)
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Variable Description Dimensions
R radius of expansion [L]
h membrane thickness [L]
U blast energy [ML2/T2]
γel membrane tension [M/T2]
ρm surrounding medium density [M/L3]
ρp membrane density [M/L3]
t time [T]

TABLE III. Variables and corresponding dimensions for bub-
ble expansion of a thin membrane.

For Π2, we again choose U, ρp, t as the 3 repeating vari-
ables and γel as the dependent variable, which is Eq.(S.9),

Π2 = γelU
−3/5ρ−2/5

p t4/5 (S.14)

For Π3, we choose U, ρp, t as the 3 repeating variables
and h as the dependent variable,

Π3 = h

(
ρp
U

)1/5

t−2/5 (S.15)

For Π4, we choose U, ρp, t as the 3 repeating variables
and ρm as the dependent variable,

Π4 =

(
ρm
ρp

)n

(S.16)

since we don’t know exact value of the scaling exponent
n. Based on the derivation for bubble expansion of a
semi-infinite medium, a possible solution is,

c1Π1 + c2Π2 + c3Π3 = c4Π4 (S.17)

Substituting all the above expressions into Eq.(S.17),
we obtain,

c1R

(
ρp
U

)1/5

t−2/5 + c2
γel

U3/5ρ
2/5
p

t4/5

+c3h

(
ρp
U

)1/5

t−2/5 = c4

(
ρm
ρp

)n
(S.18)

Note that although this expression appears to be signif-
icantly different than Eq.(S.11), they share similar con-
straints including resistance due to inertia and resistance
due to elasticity of the material. The expressions de-
viate with the additional Π3 and Π4 terms, which are
related to correction for the finite size of the membrane
and mechanical impedance mismatch of membrane and
surrounding medium.
We can estimate the γel by assuming a specific hyper-

elastic model. From Laprade and coworkers, membrane
tension is related to the stretch ratio (λ = R/Ro),

γel =
h

λ

∂Wel

∂λ
(S.19)

The exact form of Wel, such as the Neohookean or
Mooney-Rivlin model, depends on the specific material.
We can estimate the γel by assuming a specific hypere-
lastic model. The biaxial expansion of a membrane ac-
cording to the Neohookean model is defined as,

γel =
h

λ
µ(λ2 − λ−4)

≈ Rh

Ro
µ

(S.20)

where λ = R/Ro, and µ is the shear modulus of the mem-
brane. Substituting Eq.(S.20) into Eq.(S.18), we obtain,

R =
c4
(
ρm

ρp

)n
t2/5 − c3h

(ρp

U

)1/5
c1
(ρp

U

)1/5
+ c2U−3/5ρ

−2/5
p

(
h
Ro

)
µt6/5

=
c4
(
U
ρp

)1/5(ρm

ρp

)n
t2/5 − c3h

1 + c2U−2/5ρ
−3/5
p

(
h
Ro

)
µt6/5

=
C4t

2/5 − C3h

1 + C2

(
h
Ro

)
µt6/5

(S.21)


