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I. CLARIFICATION OF THE CALCULATION EMPLOYING A 2D

GENERALIZATION OF KRAMERS THEORY

In Section 4.3 of the article, we examined the dynamics of two polymers confined to a cavity

with a rectangular cross-section. We found that the polymers swap positions on either end of the

box with a dwell-time distribution that is characterized by a time constant, τd. The time constant

varies with the changes in the dimensions of the cavity as a result in concomitant changes in

the underlying free-energy landscape. To understand the relationship between τd and the free

energy, we employed a multidimensional generalization of Kramers theory.1 Here, we clarify some

details of the calculation used in that analysis.

As noted in Section 4.3 of the article, the theory predicts that

eβ∆F = Dτ ∗d , (1)

where

τ ∗d ≡
QBωBωW

2πQW
τd. (2)

Here, D is the Rouse diffusion coefficient, ∆F is the free energy barrier height, and ωB and

ωW represent the effective frequencies of the well and barrier, respectively. In addition, QB and

QW are the partition functions associated with the non-reactive modes at the free energy barrier

and well, respectively. The quantities ωW and ωB are obtained from the free energy function,

F (x, y)/kBT ≡ − lnP(x, y), as follows. First, a cross section of the free energy function in the y

direction at x=0 is fit to a function of the form F (y) = A+B(y−ymin)2 +C(y−ymin)3 +D(y−

ymin)4, where ymin is the position of the free energy minimum. From this fit, we choose B =

ω2
W/2. Next, we fit a cross section of the free energy along the minimum free energy path in the

vicinity of the saddle point at y = 0 to the function F (y) = A+By2+Dy4, from which we choose

−B = ω2
B/2. The quantity QW is obtained via a numerical approximation to the the following

integral over the nonreactive mode:
∫ Lx/2

−Lx/2
dx exp[−(F (x, ymin)−Fmin))/kBT ], where Fmin is the

free energy at the minimum (x = 0, y = ymin). Likewise, the partition function for the nonreactive

mode at the barrier, QB, located at y = 0, is given by
∫ Lx/2

−Lx/2
dx exp[−(F (x, 0)− Fbar))/kBT ],

where Fbar is the free energy at the barrier. Note that the free energy barrier height is of course

∆F = Fbar − Fmin.
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II. EFFECT OF TOPOLOGICAL ASYMMETRY FOR POLYMERS CONFINED TO

AN ELLIPTICAL CAVITY

In Section 4.4 of the article, we examined the behaviour of a long linear semiflexible polymer

and a short ring polymer, both confined to a cavity with an elliptical cross section. The linear

polymer had a length of N1 = 1000 monomers and a bending rigidity of κ = 6.36, and the ring

polymer had a length of N2 = 25 monomers. In addition, the elliptical cross section of the cavity

had an area of A = 3000 and a height of h = 15. (All quantities are given in the reduced units

defined in the article.) Various values of the eccentricity of the ellipse were considered.

(a) (b) (c)

FIG. 1. Cross sections along the x and y axes (defined in the article) of the centre-of-mass proba-

bility distributions for a short polymer of length N2 = 25 trapped with a long, linear, semiflexible

polymer of length N1 = 1000 and bending rigidity κ = 6.36 in a cavity. The cavity has an elliptical

cross section of area A = 3000 and height h = 15. Results are shown for eccentricities of (a) e = 0,

(b) e = 0.8, and (c) e = 0.95. Each graph shows results for cases where the short polymer has

linear and ring topologies. For convenience, distributions have been scaled so that the maximum

of the underlying 2D distribution for P(x, y) is equal to one. Note the cross sections for x and y

are identical for e = 0.

The distribution of the ring polymer is largely determined by the fact that it is so much shorter

than the linear polymer. Here, we examine the effects of the topological difference between the

two polymers. To do this, we carry out the same calculations that were described in Section 4.4

with the single change that the topology short polymer is linear rather than ring type. Figure 1

shows cross sections of the 2D probability distributions for the short polymer along the x and y

axes (defined in the article) for cavity eccentricities of e = 0, 0.8 and 0.95. The results clearly
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show that the topology of the short polymer has a minimal effect on the distributions. The

single notable effect is the slightly greater degree of repulsion from the lateral walls for the linear

polymer. This is evident in the fact that the probability peaks are displaced slightly inward for

the linear polymer relative to that for the ring polymer. This feature most likely arises because

of the slightly larger average size of the linear polymer.
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