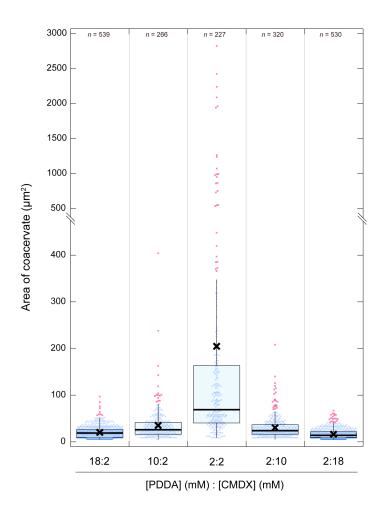
Supplementary Information

Transient formation of multi-phase droplets caused by
the addition of a folded protein into complex coacervates with
an oppositely charged surface relative to the protein

Nanako Sakakibara, a, b Tomoto Ura, a, b Tsutomu Mikawa, b Hiroka Sugai^{c,*} and Kentaro Shiraki^{a,*}

Corresponding Authors


*Email: sugai.h.aa@m.titech.ac.jp

*Email: shiraki.kentaro.gb@u.tsukuba.ac.jp

^a Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

^b RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan

^c Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.

Fig. S1 Box plot representing the area of the coacervates with the mean (×), median (horizontal bar), and outliers (dots) indicated. The areas of the PDDA/CMDX coacervates are calculated based on the microscopic images displayed in Fig. 2b. For Fig. 2b, the BF images were taken 1 h after all components were mixed. Although there were several large sized droplet outliers, as a rough trend, the droplet size tended to decrease as the PDDA:CMDX ratio deviated from stoichiometric conditions, i.e., [PDDA] (mM):[CMDX] (mM) = 2:2.

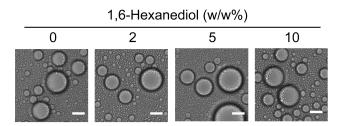
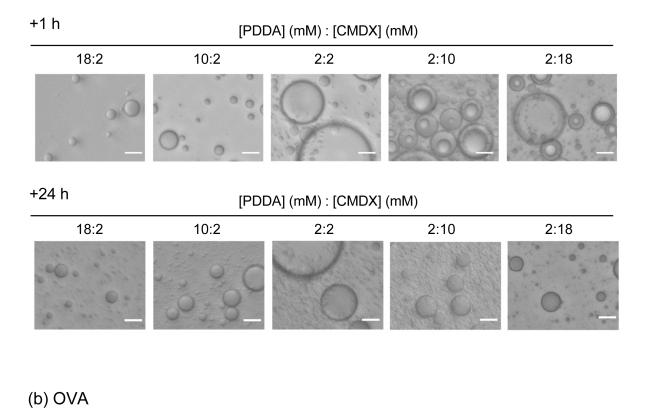



Fig. S2 Dissolution of the coacervates ([PDDA] (mM):[CMDX] (mM) = 2:2) following addition of 1,6-hexanediol (0–10 w/w%). Scale bar: 10 μ m. The BF images were taken 1 h after all components were mixed.

(a) LYZ

Fig. S3 Bright-field optical microscopy images taken 1 h and 24 h after addition of the protein ((a) LYZ and (b) OVA) to the PDDA/CMDX coacervates. Samples contain polyelectrolytes (PDDA and CMDX; 18, 10, or 2 mM) and protein (LYZ or OVA; 1 μ M). Scale bar: 10 μ m.

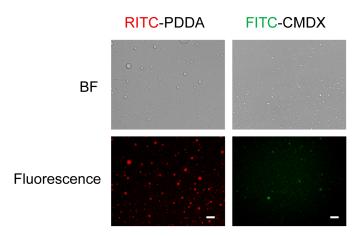
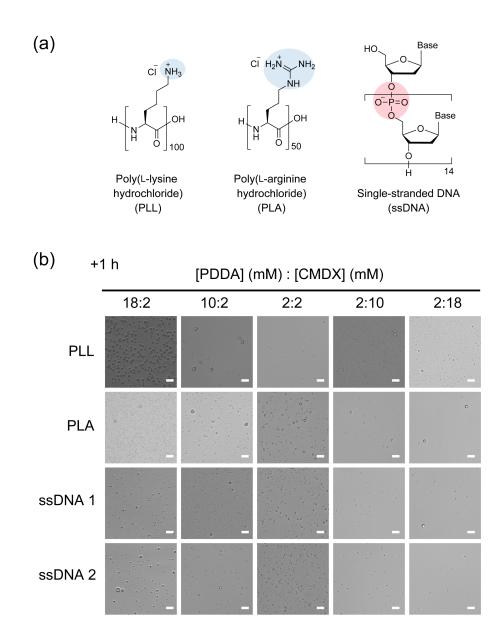



Fig. S4 Bright-field and fluorescence microscopy images of the PDDA/CMDX coacervates ([PDDA] (mM):[CMDX] (mM) = 10:2) with (a) 5% RITC-PDDA and (b) 5% FITC-CMDX. Scale bar: $10 \mu m$.

Fig. S5 (a) Chemical structures of unfolded polymers used as client molecules. (b) Bright-field images taken 1 h after the addition of client molecules (PLL, PLR, and ssDNAs) into PDDA/CMDX complex coacervates. Scale bar: $10 \, \mu m$.

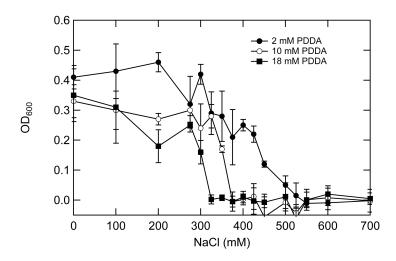


Fig. S6 Effect of adding NaCl to the PDDA/POX mixtures on the optical density at 600 nm (OD₆₀₀). Samples contain PDDA (18, 10, or 2 mM) and POX (1 μ M) in the presence of NaCl (0–700 mM).

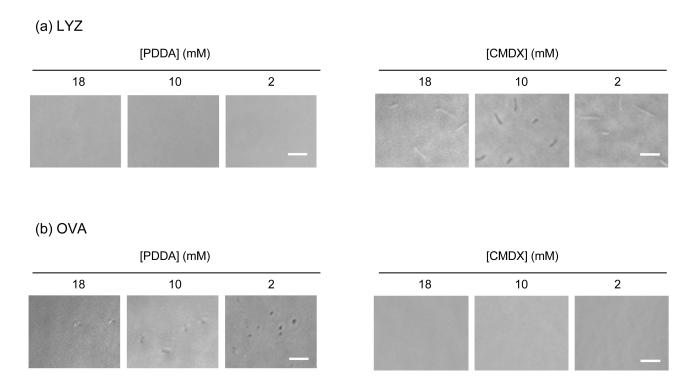
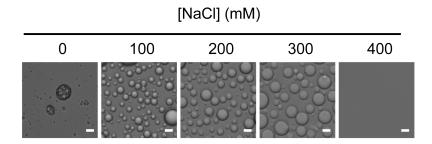



Fig. S7 Bright-field microscopy images of the mixtures of proteins (a) LYZ and (b) OVA with the polyelectrolytes PDDA and CMDX. Samples contain polyelectrolyte (PDDA or CMDX; 18, 10, or 2 mM) and protein (LYZ or OVA; 1 μ M). Scale bar: 10 μ m.

Fig. S8 Effect of ionic strength on the formation of the multi-phase droplets. Bright-field images taken 1 h after the addition of LYZ into PDDA/CMDX complex coacervates ([PDDA]:[CMDX] = 2:10) containing NaCl (0, 100, 200, 300, and 400 mM). Scale bar: $10 \mu m$.

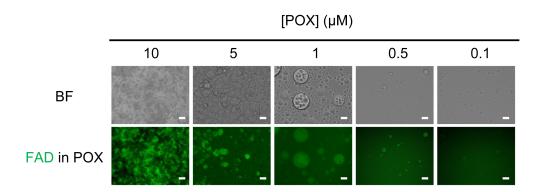


Fig. S9 Effect of the protein concentration on the formation of the multi-phase droplets. Bright-field and fluorescence images taken 1 h after the addition of POX into PDDA/CMDX complex coacervates ([PDDA]:[CMDX] = 10:2). Scale bar: $10 \mu m$.