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Active noise generation procedure

The active noise in the main text is generated numerically as follows: Let  be the sequence of identically distributed nQ
random numbers that follow a Gaussian distribution with variance , 2

(S1) 
2

22

1( ) exp( ).
22

QP Q


 

From these random numbers, we can generate a sequence of random numbers that follow a nonGaussian distribution 
(Fig. S1 (a)): 
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Here, each kick of duration  arrives at a random interval  following a Poisson distribution. The kick arrival 0t  it
time (time interval between successive kicks) thus follows the Poisson distribution with mean arrival time 

. Eq. S2 shows all random numbers of the sequence  from white Gaussian noise becomes zero except 1P i it t   nQ
one arriving at the ith interval ; hence, the variance of the nonGaussian white noise  is given by it Pq

. The exponentially correlated nonGaussian noise  of  correlation time  can be generated 2 /(1 / )P t   ( )y t c
recursively using the following relation 1, 
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The time traces of the exponentially correlated nonGaussian active noise  are shown in Fig. S1(b). The active ( )y t
force  is obtained by multiplying  with the trap stiffness  as ( )act t ( )y t k

(S4)( ) ( ).act t ky t 

The above noise generation approach is equivalent to the active Ornstein–Uhlenbeck process2: 

(S5) ( )/ ( ) 2 ( ),c act act PNd t dt t t     

where  is the nonGaussian white noise with a zero mean  and correlation ( )PN t ( ) 0PN t 

; and  is the energy scale of the active force. The Kurtosis  ( ) ( ) [ /(1 / )] ( )PN PN Pt t' t t t'    A    A

, which measures the degree of nonGaussianity of the probability 4 2( ) [ ( ) ( ) ] / [ ( ) ( ) ]K t t t t t            
distributions, of nonGaussian white noise  and the exponentially correlated active noise , are shown in ( )PN t ( )act t
Fig. S1(d) and Fig. S1(e), respectively. The active noise  becomes nonGaussian ( ) for ≳ 0.2.   ( )act t 3K  /P c 
Integrating Eq. (S5), we get the formal solution for the nonGaussian active noise: 
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From Eq. (S6), we can derive the autocorrelation of the nonGaussian active noise as 

 (S7)( )/ ( )/ ( ') /2
2 0 0

2( ) ( ) ( (0)) ( ) ( ) .c c c
t t't t' t s t' s

act act act PN PN
c

t t' e dse ds'e s s'      


        

By using , Eq. S7 becomes( ) ( ) [ /(1 / )] ( )PN PN Ps s' t s s'    A   
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In steady state,  is equal to the variance of the active noise, . Hence, the 2( (0))act 2( ( )) /[ (1 / )]act c Pt t   A  

autocorrelation of the nonGaussian active noise in steady state is given by 
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The active force strength  of the nonGaussian active noise is related to  and  as /(1 / )act Pf C t   A c

. For and , , hence  reduces to the Gaussian white /[ (1 / )]act c Pf t  A   0P  0t  /(1 / ) AP tA    ( )PN t

noise  of zero mean and correlation  and the active noise  in Eq. (S5) reduces GN ( ) ( ) ( )GN GNt t' t t'   A  ( )act t

to the active Ornstein–Uhlenbeck noise with correlation .  /( ) ( ) ( / ) ct t'
cOU

t t' e      A

Solving Eq. (S5) by the Fourier transform method, we can derive an expression for the power spectral density 
(PSD) of the nonGaussian active noise:
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Figure S1(f) shows the PSD of the nonGaussian active noise agrees well with Eq. (S10).

Particle dynamics in a harmonic potential

We consider the one-dimensional motion of the particle in a harmonic potential  in an active bath. 2( ) (1/2)V x kx
The motion of the particle is given by the overdamped Langevin equation:
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The mean squared displacement (MSD) of the particle in the harmonic potential during the time interval  in steady-t
state can be calculated by solving Eq. (S11) by Laplace transform method 3:
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Figure S5(c) shows that the MSD of the particle in the presence of nonGaussian active noise fits well with Eq. (S12). 
Also, we show that the MSD with nonGaussian active noise coincides with the MSD of the AOU noise of the same 



 and . Thus, the steady state dynamics in the presence of nonGaussian active noise is similar to that of the actf c
AOU noise.

 

Figures

Fig. S1. (a) Trace of the nonGaussian white noise  with  generated from Gaussian white noise of ( )PN t 28 msP 
variance , following Eq. (S2). The variance of the nonGaussian white noise is given by 2 2 2(10 pN)C k  

. The average waiting time between the kicks is . Note that although each kick arrives at 2/(1 / ) (0.5 pN)PC t   P
an average interval , the strength and direction of the kicks are purely random, which follow white Gaussian noise. P
(b) The exponentially correlated nonGaussian active noise  of strength  with ( )act t /(1 / ) 0.5 pNact Pf C t   

and  generated from the nonGaussian white noise in panel (a) using Eq. (S4). (c) Probability 28 msP  7 msc 
distribution function (PDF) of the nonGaussian active noise in panel (b). The solid red curve is the Gaussian fitting. 
(d) Kurtosis of the nonGaussian white noise as a function of . (e) Kurtosis of nonGaussian active noise as a /P t 
function of . The horizontal dashed line in (d) and (e) correspond to Gaussian distribution . (f) Power /P c  3K 

spectral density (PSD) of the nonGaussian active noise of fixed  and  with   0.5 pNactf  28 msP  2.8 msc 
(blue), 7 ms (olive), and 70 ms (wine). The solid curves are the theoretical plots using Eq. (S10). Inset: PSD of the 
nonGaussian active noise of ,  , and  (olive) coincides with the active Ornstein– 0.5 pNactf  28 msP  7 msc 
Uhlenbeck noise of same strength  and correlation time  (orange). 0.5 pNactf  7 msc 



Fig. S2. Noise arrival time distribution for nonGaussian active noise follows a Poisson distribution with average noise 
arrival time (a) , (b) , and (c) .(2.8 0.44) msP   (28 1.41) msP   (50 1.88) msP  

Fig. S3. Schematics of the active optical feedback trap (AOFT) setup. M1, M2, M3: mirror. L1, L2, L3: Lens. BS: 
beam splitter, DM: dichroic mirror, F1, F2: filter. CCD: camera. 



Fig. S4. Trajectories of the particle in a double-well potential,  and  (top panels), in the / 3b BE k T  50 nmmx 
presence of nonGaussian active noise of fixed strength  and average noise arrival time  with 0.5 pNactf  28 msP 
correlation time (bottom panels). (a)  (blue, numerical result), (b) 7 ms (black),  and (c) 21 ms (green). 0.28 msc 
The PDFs of the particle position in Fig. 1b of the main text are from these trajectories. (d) Effective double-well 
potentials  for the like-colored data in panels (a) to (c) (also PDFs in Fig. 1b in the main text). ( )/ ~ ln ( )BU x k T P x
The dotted curves represent the experimental results. The solid curves are obtained from the numerical simulation of 
Eq. (1) in the main text. The gray curve is the theoretical plot of the symmetric double-well potential with 

and . (Numerical result) (e)-(f) Plot showing the variation of the barrier height  and / 3b BE k T  50 nmmx  /b BE k T
well separation  as a function of  for the particle in symmetric double-well with  and mx /c r  / 3b BE k T 

 in the presence of the nonGaussian active noise with  and  (blue) and 50 nmmx  20 msP  0.5 pNactf 
 (orange).1 pNactf 

Fig. S5. PDF of the particle position in harmonic potential in the presence of nonGaussian 2( ) ( /2)( )op cV x k x x 
active noise. Here, the active noise is injected into the particle in the form of feedback force  that ( ) ( )actf t ky t 
corresponds to the shift of the potential center by . (a) (experimental result) PDF of the particle ( ) ( ) ( )cx t x t y t 
position in the harmonic potential of stiffness in the thermal bath (gray circles), in the presence of -19.1 pN mk 



non-Gaussian noise of strength  and correlation time  with noise arrival interval 4.6 pNC  17.5 msc 
 (wine circles), and 35 ms (dark cyan bars).  The solid curves are the Gaussian fittings. (b) (numerical 14 ms  P 

result obtained by solving Eq. S11) PDF of the particle position in the harmonic potential in the thermal bath (white 
circles), in the presence of non-Gaussian noise of fixed strength  and correlation time  with 0.5 pNactf  25 msc 

(blue circles), 50  ms (pink bars), and 250 ms (black bars). The solid curves are the Gaussian fittings. We 5 msP 
found that the PDFs are non-Gaussian only when ≲   and ≳ , where  is the thermal c P actf thf 0.2 pNth Bf k Tk 
strength. (c) Mean squared displacement of a particle in the harmonic potential in steady-state in the presence of the 
nonGaussian active noise of , , and (light blue) coincides with the MSD in the 0.5 pNactf  20 msc  40 msP 
presence of AOU noise of same  and  (wine). The orange solid curve is the plot of Eq. (S12). 0.5 pNactf  20 msc 
The black data is the MSD in the thermal bath.

Fig. S6. Semi-log plot of the residence time distribution of the particle in the symmetric double-well potential in the presence of 
nonGaussian active noise of  and . The dotted line corresponds to . The fitting 1 pNactf  / 0.25c P   0.28exp( 0.5 )y x 
of the dotted line with the peak heights demonstrates that the height of each peak decreases exponentially with their order n.



Fig. S7. (Numerical result obtained by solving Eq. (1) in the main text) (a) to (c) Particle trajectories and nonGaussian 
active noise trajectories (orange curves) for the motion of the particle in the double well potential in the presence of 
nonGaussian active noise of fixed  and  with (a) , (b) , and (c) 0.5 pNactf  / 20P r   / 0.5c r   / 5c r  

. (d) Plot of the first peak strength  as a function of  for fixed  and  (light / 30c r   1P /c P  0.5 pNactf  8 msP 
blue)  (light purple),  (wine), and  (olive). For all cases,  is maximum near 16 msP  40 msP  160 msP  1P

 (dashed vertical line). Inset: Same data in the main panel plotted as a function of  shows the global / 0.25c P   /c r 
maximum of   is when ≲ . 1P r c  5 r



Fig. S8. (Numerical result obtained by solving Eq. (1) in the main text) Power spectral density in the presence of the 
nonGaussian active noise of strength  (greater than thermal strength ) with  and 1 pNactf  0.4 pNthf  25 msc 

 (non-Gaussian regime), under the same resonant condition of Fig. 3(c) in the main text. Inset: the 1000 msP 
effective double-well potential (black circles) for the same data in the main panel. The gray solid curve fits well with 
the symmetric double-well potential  of and  with the fitting parameter ( )DWV x / 3b BE k T  50 nmmx 

 and , showing that the effective double-well potential follows Gaussian / 3.09 0.06b BE k T   54.9 0.2 nmmx  
distribution near the center with non-Gaussian outer tails.    
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