# Electronic Supplementary Information for "The Alternate Ligand Jagged Enhances the Robustness of Notch Signaling Patterns"

Mrinmoy Mukherjee and Herbert Levine

## The description of the video files

Video link: click here

Video S1: Spatiotemporal patterns of Delta (D) starting from uniform initial condition with small fluctuations for  $\lambda_N = 5.0$ ,  $\lambda_D = 10.0$ ,  $\lambda_J = 0.5$  and L = 6. All other parameters are standard.

Video S2: Spatiotemporal patterns of Delta (D) starting from uniform initial condition with small fluctuations for  $\lambda_N = 5.0$ ,  $\lambda_D = 10.0$ ,  $\lambda_J = 0.5$  and L = 50. All other parameters are standard.

Video S3: Spatiotemporal patterns of Delta (D) starting from uniform initial condition with small fluctuations for  $\lambda_N = 1.5$ ,  $\lambda_D = 10.0$  and  $\lambda_J = 0.1$ . All other parameters are standard.

Video S4: Spatiotemporal patterns of Delta (D) starting from a hexagonal seed for  $\lambda_N = 5.0$ ,  $\lambda_D = 10.0$  and  $\lambda_J = 0.5$ . All other parameters are standard.

Video S5: Spatiotemporal patterns of Delta (D) starting from a hexagonal seed for  $\lambda_N = 5.0$ ,  $\lambda_D = 10.0$  and  $\lambda_J = 0.9$ . All other parameters are standard.

### The reduced set of 12 ODE's

$$\begin{split} N_A &= \lambda_N (1 + I_A^{n_N} / (1 + I_A^{n_N})) - N_A (k_c (D_A + J_A) + 0.5k_t (D_B + D_C + J_B + J_C)) - \gamma N_A \\ \dot{N}_B &= \lambda_N (1 + I_B^{n_N} / (1 + I_B^{n_N})) - N_B (k_c (D_B + J_B) + 0.5k_t (D_C + D_A + J_C + J_A)) - \gamma N_B \\ \dot{N}_C &= \lambda_N (1 + I_C^{n_N} / (1 + I_C^{n_N})) - N_C (k_c (D_C + J_C) + 0.5k_t (D_A + D_B + J_A + J_B)) - \gamma N_C \\ \dot{D}_A &= \lambda_D / (1 + I_A^{n_D}) - D_A (k_c N_A + 0.5k_t (N_B + N_C)) - \gamma D_A \\ \dot{D}_B &= \lambda_D / (1 + I_B^{n_D}) - D_B (k_c N_B + 0.5k_t (N_C + N_A)) - \gamma D_B \\ \dot{D}_C &= \lambda_D / (1 + I_B^{n_D}) - D_C (k_c N_C + 0.5k_t (N_A + N_B)) - \gamma D_C \\ \dot{J}_A &= \lambda_J (1 + I_A^{n_J} / (1 + I_A^{n_J})) - J_A (k_c N_A + 0.5k_t (N_C + N_A)) - \gamma J_B \\ \dot{J}_B &= \lambda_J (1 + I_B^{n_J} / (1 + I_B^{n_J})) - J_B (k_c N_B + 0.5k_t (N_C + N_A)) - \gamma J_B \\ \dot{J}_C &= \lambda_J (1 + I_B^{n_J} / (1 + I_B^{n_J})) - J_C (k_c N_C + 0.5k_t (N_A + N_B)) - \gamma J_C \\ \dot{I}_A &= 0.5k_t N_A (D_B + D_C + J_B + J_C) - \gamma I_A \\ \dot{I}_B &= 0.5k_t N_B (D_C + D_A + J_C + J_A) - \gamma I_B \\ \dot{I}_C &= 0.5k_t N_C (D_A + D_B + J_A + J_B) - \gamma I_C \end{split}$$

## Method

## Linear Stability Analysis:

At first, we calculate numerically the steady state solutions (fixed points), where  $\dot{N}_{(A,B,C)} = \dot{D}_{(A,B,C)} = \dot{J}_{(A,B,C)} = \dot{I}_{(A,B,C)} = \dot{I}_{(A,B,C)} = 0.$ 

In general three kinds of solutions are possible:

(1) Uniform (U):  $\Delta N = \Delta D = \Delta J = \Delta I = 0$ ,

(2) Hexagon (H):  $\Delta N < 0$ ,  $\Delta D > 0$ ,  $\Delta I < 0$  and  $\Delta J$  can be positive or negative depending on the parameters and (3) Antihexagon (A):  $\Delta N > 0$ ,  $\Delta D < 0$ ,  $\Delta I > 0$  and  $\Delta J$  can be positive or negative depending on the parameters, where  $\Delta N$ ,  $\Delta D$ ,  $\Delta J$  and  $\Delta I$  are defined as  $(N_A - N_B)$ ,  $(D_A - D_B)$ ,  $(J_A - J_B)$  and  $(I_A - I_B)$  respectively and  $(N, D, J, I)_B = (N, D, J, I)_C \neq (N, D, J, I)_A$ . Afterwards, we analyze their stability via linear stability analysis across the parameter space by calculating the eigenvalues (eigv) of the Jacobian matrix at those fixed points:

| -                                         |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           |                                           | -                                         |
|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| $\frac{\partial \dot{N}_A}{\partial N_A}$ | $\frac{\partial \dot{N}_A}{\partial N_B}$ | $\frac{\partial \dot{N}_A}{\partial N_C}$ | $\frac{\partial \dot{N}_A}{\partial D_A}$ | $rac{\partial \dot{N}_A}{\partial D_B}$  | $\frac{\partial \dot{N}_A}{\partial D_C}$ | $\frac{\partial \dot{N}_A}{\partial J_A}$ | $\frac{\partial \dot{N}_A}{\partial J_B}$ | $\frac{\partial \dot{N}_A}{\partial J_C}$ | $\frac{\partial \dot{N}_A}{\partial I_A}$ | $\frac{\partial \dot{N}_A}{\partial I_B}$ | $\frac{\partial \dot{N}_A}{\partial I_C}$ |
| $rac{\partial \dot{N}_B}{\partial N_A}$  | $rac{\partial \dot{N}_B}{\partial N_B}$  | $\frac{\partial \dot{N}_B}{\partial N_C}$ | $rac{\partial \dot{N}_B}{\partial D_A}$  | $rac{\partial \dot{N}_B}{\partial D_B}$  | $rac{\partial \dot{N}_B}{\partial D_C}$  | $rac{\partial \dot{N}_B}{\partial J_A}$  | $rac{\partial \dot{N}_B}{\partial J_B}$  | $rac{\partial \dot{N}_B}{\partial J_C}$  | $rac{\partial \dot{N}_B}{\partial I_A}$  | $rac{\partial \dot{N}_B}{\partial I_B}$  | $\frac{\partial \dot{N}_B}{\partial I_C}$ |
| $rac{\partial \dot{N}_C}{\partial N_A}$  | $rac{\partial \dot{N}_C}{\partial N_B}$  | $rac{\partial \dot{N}_C}{\partial N_C}$  | $rac{\partial \dot{N}_C}{\partial D_A}$  | $\frac{\partial \dot{N}_C}{\partial D_B}$ | $rac{\partial \dot{N}_C}{\partial D_C}$  | $rac{\partial \dot{N}_C}{\partial J_A}$  | $rac{\partial \dot{N}_C}{\partial J_B}$  | $rac{\partial \dot{N}_C}{\partial J_C}$  | $rac{\partial \dot{N}_C}{\partial I_A}$  | $rac{\partial \dot{N}_C}{\partial I_B}$  | $rac{\partial \dot{N}_C}{\partial I_C}$  |
| $rac{\partial \dot{D}_A}{\partial N_A}$  | $rac{\partial \dot{D}_A}{\partial N_B}$  | $\frac{\partial \dot{D}_A}{\partial N_C}$ | $rac{\partial \dot{D}_A}{\partial D_A}$  | $rac{\partial \dot{D}_A}{\partial D_B}$  | $rac{\partial \dot{D}_A}{\partial D_C}$  | $\frac{\partial \dot{D}_A}{\partial J_A}$ | $rac{\partial \dot{D}_A}{\partial J_B}$  | $rac{\partial \dot{D}_A}{\partial J_C}$  | $rac{\partial \dot{D}_A}{\partial I_A}$  | $rac{\partial \dot{D}_A}{\partial I_B}$  | $rac{\partial \dot{D}_A}{\partial I_C}$  |
| $rac{\partial \dot{D}_B}{\partial N_A}$  | $rac{\partial \dot{D}_B}{\partial N_B}$  | $rac{\partial \dot{D}_B}{\partial N_C}$  | $rac{\partial \dot{D}_B}{\partial D_A}$  | $rac{\partial \dot{D}_B}{\partial D_B}$  | $rac{\partial \dot{D}_B}{\partial D_C}$  | $rac{\partial \dot{D}_B}{\partial J_A}$  | $rac{\partial \dot{D}_B}{\partial J_B}$  | $rac{\partial \dot{D}_B}{\partial J_C}$  | $rac{\partial \dot{D}_B}{\partial I_A}$  | $rac{\partial \dot{D}_B}{\partial I_B}$  | $rac{\partial \dot{D}_B}{\partial I_C}$  |
| $rac{\partial \dot{D}_C}{\partial N_A}$  | $rac{\partial \dot{D}_C}{\partial N_B}$  | $rac{\partial \dot{D}_C}{\partial N_C}$  | $rac{\partial \dot{D}_C}{\partial D_A}$  | $rac{\partial \dot{D}_C}{\partial D_B}$  | $rac{\partial \dot{D}_C}{\partial D_C}$  | $rac{\partial \dot{D}_C}{\partial J_A}$  | $rac{\partial \dot{D}_C}{\partial J_B}$  | $rac{\partial \dot{D}_C}{\partial J_C}$  | $rac{\partial \dot{D}_C}{\partial I_A}$  | $rac{\partial \dot{D}_C}{\partial I_B}$  | $rac{\partial \dot{D}_C}{\partial I_C}$  |
| $\frac{\partial \dot{J}_A}{\partial N_A}$ | $\frac{\partial \dot{J}_A}{\partial N_B}$ | $\frac{\partial \dot{J}_A}{\partial N_C}$ | $\frac{\partial \dot{J}_A}{\partial D_A}$ | $\frac{\partial \dot{J}_A}{\partial D_B}$ | $\frac{\partial \dot{J}_A}{\partial D_C}$ | $\frac{\partial \dot{J}_A}{\partial J_A}$ | $\frac{\partial \dot{J}_A}{\partial J_B}$ | $\frac{\partial \dot{J}_A}{\partial J_C}$ | $rac{\partial \dot{J}_A}{\partial I_A}$  | $\frac{\partial \dot{J}_A}{\partial I_B}$ | $\frac{\partial \dot{J}_A}{\partial I_C}$ |
| $rac{\partial \dot{J}_B}{\partial N_A}$  | $\frac{\partial \dot{J}_B}{\partial N_B}$ | $\frac{\partial \dot{J}_B}{\partial N_C}$ | $\frac{\partial \dot{J}_B}{\partial D_A}$ | $rac{\partial \dot{J}_B}{\partial D_B}$  | $rac{\partial \dot{J}_B}{\partial D_C}$  | $\frac{\partial \dot{J}_B}{\partial J_A}$ | $rac{\partial \dot{J}_B}{\partial J_B}$  | $rac{\partial \dot{J}_B}{\partial J_C}$  | $rac{\partial \dot{J}_B}{\partial I_A}$  | $rac{\partial \dot{J}_B}{\partial I_B}$  | $\frac{\partial \dot{J}_B}{\partial I_C}$ |
| $rac{\partial \dot{J}_C}{\partial N_A}$  | $\frac{\partial \dot{J}_C}{\partial N_B}$ | $rac{\partial \dot{J}_C}{\partial N_C}$  | $rac{\partial \dot{J}_C}{\partial D_A}$  | $rac{\partial \dot{J}_C}{\partial D_B}$  | $rac{\partial \dot{J}_C}{\partial D_C}$  | $rac{\partial \dot{J}_C}{\partial J_A}$  | $rac{\partial \dot{J}_C}{\partial J_B}$  | $rac{\partial \dot{J}_C}{\partial J_C}$  | $rac{\partial \dot{J}_C}{\partial I_A}$  | $rac{\partial \dot{J}_C}{\partial I_B}$  | $rac{\partial \dot{J}_C}{\partial I_C}$  |
| $rac{\partial \dot{I}_A}{\partial N_A}$  | $rac{\partial \dot{I}_A}{\partial N_B}$  | $\frac{\partial \dot{I}_A}{\partial N_C}$ | $rac{\partial \dot{I}_A}{\partial D_A}$  | $rac{\partial \dot{I}_A}{\partial D_B}$  | $rac{\partial \dot{I}_A}{\partial D_C}$  | $rac{\partial \dot{I}_A}{\partial J_A}$  | $rac{\partial \dot{I}_A}{\partial J_B}$  | $rac{\partial \dot{I}_A}{\partial J_C}$  | $rac{\partial \dot{I}_A}{\partial I_A}$  | $rac{\partial \dot{I}_A}{\partial I_B}$  | $rac{\partial \dot{I}_A}{\partial I_C}$  |
| $\frac{\partial \dot{I}_B}{\partial N_A}$ | $\frac{\partial \dot{I}_B}{\partial N_B}$ | $\frac{\partial \dot{I}_B}{\partial N_C}$ | $rac{\partial \dot{I}_B}{\partial D_A}$  | $rac{\partial \dot{I}_B}{\partial D_B}$  | $rac{\partial \dot{I}_B}{\partial D_C}$  | $rac{\partial \dot{I}_B}{\partial J_A}$  | $rac{\partial \dot{I}_B}{\partial J_B}$  | $rac{\partial \dot{I}_B}{\partial J_C}$  | $rac{\partial \dot{I}_B}{\partial I_A}$  | $rac{\partial \dot{I}_B}{\partial I_B}$  | $rac{\partial \dot{I}_B}{\partial I_C}$  |
| $\frac{\partial \dot{I}_C}{\partial N_A}$ | $\frac{\partial \dot{I}_C}{\partial N_B}$ | $\frac{\partial \dot{I}_C}{\partial N_C}$ | $rac{\partial \dot{I}_C}{\partial D_A}$  | $rac{\partial \dot{I}_C}{\partial D_B}$  | $rac{\partial \dot{I}_C}{\partial D_C}$  | $\frac{\partial \dot{I}_C}{\partial J_A}$ | $rac{\partial \dot{I}_C}{\partial J_B}$  | $rac{\partial \dot{I}_C}{\partial J_C}$  | $rac{\partial \dot{I}_C}{\partial I_A}$  | $rac{\partial \dot{I}_C}{\partial I_B}$  | $\frac{\partial \dot{I}_C}{\partial I_C}$ |

It is essential to note that the stability matrix is derived from the full 12 variable dynamical system even though the base states all have the same concentration values at the B and C sites. Demanding that the perturbation obey this symmetry and reducing the full system to 8 equations misses the instability which restricts the allowed range of anti-hexagon patterns.

To calculate the bifurcation diagrams we note the following:

(1) If  $\operatorname{Re}(\operatorname{eigv}) < 0$ , the fixed points are linearly stable and

(2) If  $\operatorname{Re}(\operatorname{eigv}) > 0$ , the number of positive eigenvalues defines the number of unstable modes of the corresponding fixed points.

## Initial conditions

To generate the patterns on the lattice of size L, as shown in Fig. 4 in the main text, we integrate the the system of  $4 * L^2$  equations (Eq. 1 in the main text) by Euler method with time step = 0.1 using periodic boundary condition. We use the following initial conditions:

$$N_i(t=0) = \lambda_N$$
  

$$D_i(t=0) = \epsilon \lambda_D (1 + \sigma U_i)$$
  

$$J_i(t=0) = \epsilon \lambda_J (1 + \sigma U_i)$$
  

$$I_i(t=0) = 0$$

where,  $\epsilon$  is a small number ( $\epsilon = 10^{-5}$ ),  $\sigma$  is the amplitude of the noise ( $\sigma = 0.5$ ) and  $U_i$  is a uniform random number between -0.5 and 0.5.

For the pattern formation in the bistable region (as shown in Fig. 7 in the main text), we use a hexagonal seed (hexagon solution where  $\Delta N < 0$ ,  $\Delta D > 0$  and  $\Delta I < 0$  with some noise on 6 cells) in the center of the lattice and the previous initial condition on the rest of the lattice.

### Parameters

Typically considering the number of proteins in the membrane up to few thousand per cell, we scale those values by  $10^3$ . All the parameters and their values and unit are given in the Tables below:

| Parameters                                                                                              |                   |                       |                |                  |                |  |
|---------------------------------------------------------------------------------------------------------|-------------------|-----------------------|----------------|------------------|----------------|--|
| Figures                                                                                                 | $\lambda_N$       | $\lambda_D$           | $\lambda_J$    | $k_c$            | $k_t$          |  |
| Figure 2                                                                                                | 1.822,  0.9,  5.0 | [1.0 - 4.0]           | 0.1            | 0.1              | 0.04           |  |
| Figure 3                                                                                                | [0.5 - 3.0]       | [0.01 - 40.0]         | [0.01 - 3.5]   | 0.1              | 0.04           |  |
| Figure 4                                                                                                | 5.0               | 10.0, 20.0            | 0.001,0.5,0.65 | 0.1              | 0.04           |  |
| Figure 5                                                                                                | 5.0               | 5.0, 10.0, 20.0, 40.0 | [0.001 - 10]   | 0.1              | 0.04           |  |
| Figure 6                                                                                                | 5.0               | 20.0                  | [0.001 - 4.5]  | [0.001 - 0.12]   | [0.01 - 0.09]  |  |
| Figure 7                                                                                                | 5.0               | 10.0                  | 0.5,  0.9      | 0.1              | 0.04           |  |
| Figure S1                                                                                               | 5.0               | 10.0                  | 0.001,0.5      | 0.1              | 0.04           |  |
| Figure S2                                                                                               | 5.0               | 5.0, 10.0, 20.0       | 0.001,  0.5    | 0.1              | 0.04           |  |
| Figure S3                                                                                               | [1.5 - 3.0]       | 10.0                  | [0.1 - 1.3]    | 0.1              | 0.04           |  |
| Figure S4                                                                                               | [1.5 - 5.0]       | [5.0 - 40.0]          | [0.001 - 10]   | 0.1              | 0.04           |  |
| Figure S5                                                                                               | [1.0 - 5.0]       | [0.01 - 50.0]         | 0.001,  0.1    | [0.001 - 0.12]   | 0.04           |  |
| Figure S6                                                                                               | 2.5, 5.0, 10.0    | [0.01 - 40.0]         | [0.01 - 7]     | 0.05,  0.1,  0.2 | 0.02,0.04,0.08 |  |
| Other parameters for all the Figures: $\gamma = 0.1$ , $\gamma_I = 0.5$ , $n_N = n_D = 2$ and $n_J = 5$ |                   |                       |                |                  |                |  |

 ${\rm TABLE~S1:}$  Parameters for all the Figures described in the manuscript.

| Unit of the Parameters          |                                              |  |  |  |
|---------------------------------|----------------------------------------------|--|--|--|
| Parameters                      | Unit                                         |  |  |  |
| $\lambda_N,\lambda_D,\lambda_J$ | $(10^{-3} \text{ molecules per cell})h^{-1}$ |  |  |  |
| $k_c,  k_t,  \gamma,  \gamma_I$ | $time^{-1} (h^{-1})$                         |  |  |  |
| $n_N, n_D, n_J$                 | Dimensionless                                |  |  |  |

TABLE S2: Unit of all the parameters described in the manuscript.



FIG. S1: Steady state patterns of Notch (N), Delta (D), Jagged (J) and NICD (I) on a hexagonal lattice. The steady states of Notch (N), Delta (D), Jagged (J) and NICD (I) at  $\lambda_N = 5.0$ ,  $\lambda_D = 10.0$  and  $\lambda_J = 0.001$  and 0.5 on a hexagonal lattice of size (a-h) L = 6 and (i-p) L = 50. All other parameters are standard.



FIG. S2: Effect of production rate of Delta ( $\lambda_D$ ). Dynamics of Delta (D) for all the cells on a hexagonal lattice of size L = 6 and L = 50 at  $\lambda_N = 5.0$ ,  $\lambda_J = 0.001$  and 0.5 (0.1 instead of 0.5 for  $\lambda_D = 5.0$ , because at  $\lambda_J = 0.5$ ,  $\lambda_D = 5.0$  and  $\lambda_N = 5.0$ , the steady states become uniform (U)) for (a)  $\lambda_D = 5.0$ , (d)  $\lambda_D = 10.0$  and (g)  $\lambda_D = 20.0$ . (b), (c), (e), (f), (h), (i) Corresponding patterns of Delta (D) at steady states for L = 50 for different values of  $\lambda_D$  and  $\lambda_J$ . All other parameters are standard.



FIG. S3: Effect of production rate of Notch ( $\lambda_N$ ). The steady state patterns of Delta (D) on a hexagonal lattice of size L = 50 (a) for varying  $\lambda_N$  at  $\lambda_D = 10.0$ ,  $\lambda_J = 0.1$  and (b) for varying  $\lambda_J$  at  $\lambda_N = 1.5$ ,  $\lambda_D = 10.0$ . (c), (d) The corresponding number of Sender (S) states ( $n_S$ ) and ratio of number of Sender (S) and Receiver (R) states ( $\frac{n_S}{n_R}$ ). All other parameters are standard.



FIG. S4: Steady state values of Notch (N), Delta (D) and Jagged (J) as a function of  $\lambda_J$ . Steady state values of (a) Notch (N), (b) Delta (D), (c) Jagged (J) as a function of  $\lambda_J$  for different values of  $\lambda_D$  at  $\lambda_N = 5.0$ . The y-axes (N, D and J-axes) are in log-scale. The difference in Delta ( $\Delta D$ ) between the Sender (S) and Receiver (R) states ( $D_S - D_R$ ) as a function of  $\lambda_J$  for different values of  $\lambda_N$  at (d)  $\lambda_D = 10.0$  and (e)  $\lambda_D = 20.0$ . All other parameters are standard.



FIG. S5: Effect of rate of cis-inhibition  $(k_c)$ . (a) Phase diagrams in  $\lambda_D - k_c$  plane for  $\lambda_N = 5.0$ ,  $\lambda_J = 0.1$ . The white and colored (green:  $\Delta J < 0$ ) and purple:  $\Delta J > 0$ )) regions represent uniform (U:  $\Delta N = \Delta D = 0$ ) and hexagon (H:  $\Delta N < 0$ ,  $\Delta D > 0$ ) phases respectively. The cyan ( $\Delta J < 0$ ) and orange ( $\Delta J > 0$ ) colored region represents the bistability of uniform (U) and High-High (Hi-Hi:  $\Delta N > 0$ ,  $\Delta D > 0$ ) phases. The white line represents the boundary of U region.  $\Delta N$ ,  $\Delta D$  and  $\Delta J$ are defined as ( $N_S - N_R$ ), ( $D_S - D_R$ ) and ( $J_S - J_R$ ) respectively, where S and R represent the Sender (high D, low N) and Receiver (low D, high N) states respectively. The difference in Delta ( $\Delta D$ ) between the Sender (S) and Receiver (R) states ( $D_S - D_R$ ) as a function of  $k_c$  (b) at  $\lambda_N = 5.0$ ,  $\lambda_J = 0.001$  for different values of  $\lambda_D$  and (c) at  $\lambda_D = 20.0$ ,  $\lambda_J = 0.001$  for different values of  $\lambda_N$ . All other parameters are standard.



FIG. S6: Change in phase diagram in  $\lambda_D - \lambda_J$  plane. The standard phase diagram (a) in  $\lambda_D - \lambda_J$  plane at  $\lambda_N = 5.0$ ,  $k_c = 0.1$ ,  $k_t = 0.04$  changes, especially the region of bistability (where both the uniform (U:  $\Delta N = \Delta D = 0$ ) and hexagon (H:  $\Delta N < 0$ ,  $\Delta D > 0$ ) phases are stable), with the decrease and increase in (b–c)  $k_c$ , (d–e)  $k_t$  and (f–g)  $\lambda_N$ . The white and colored (green:  $\Delta J < 0$ ) and purple:  $\Delta J > 0$ )) regions represent uniform (U) and hexagon (H) phases respectively. The white lines represent the boundary of U region.  $\Delta N$ ,  $\Delta D$  and  $\Delta J$  are defined as  $(N_S - N_R)$ ,  $(D_S - D_R)$  and  $(J_S - J_R)$  respectively, where S and R represent the Sender (high D, low N) and Receiver (low D, high N) states respectively. All other parameters are standard.