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1 The “locally-spherical” approximation
As discussed in the main text, in [Phase separation of mixed polymer brushes on surfaces with nonuni-
form curvature, J. Chem. Phys. 139(19), 2013], Tung and Cacciuto not only make a local density
approximation but also assume that the brush behaves as it would on a spherical surface with the
same average mean curvature. This is an approximation and does not hold exactly for a locally cylin-
drical surface, as the result deviates from the exact calculation that can be performed in this case,
see Eqs.17 and 18 in the main text. Notice that, however, the difference is only quantitative but not
qualitative, in the sense that the prediction of phase stability is not affected. Importantly, with this ad-
ditional approximation one could treat more general surfaces where the curvature varies along more
than a single direction, which can be done by simply replacing R(⃗r) = 1/cmean(⃗r) in the definition of
the scaled variable y in the equation reported below (see the main text for more details and the exact
definition of y).
Thus, for reference and potential future studies, we report here the results we would obtain if such
a “locally-spherical” surface approximation was made, which can be simply derived from functional
minimisation of the free-energy density procedure, leading to the following self-consistent equations:
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where we remind both φL and y are functions of the point r⃗ on the surface.
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2 Understanding the limitations of our model: the local approximation
When treating surfaces of spatially varying curvature, we make a local density approximation. In
practice, this means the polymer experience an environment that is consistent with what would be
felt if it was on a surface of uniform curvature, with the value of this effective curvature being the one
measured at the polymer grafting point. In this way, the local curvature at the grafting point is all that
is necessary to write down our free-energy functional.
This approximation is expected to fail for “long brushes”, more precisely, brushes for which the brush
height is larger than the length-scale on which the curvature varies appreciably, λ0 in our system in
the main text. For short brushes, the position of the whole polymer backbone is strongly correlated
with the grafting point but this is not the case anymore for long brushes, where points on the polymer
backbone far enough from the grafting point lose any spatial correlation with it and the chain explores
environments that could be consistent with grafting points with a different curvature, see Figure 1
below.

a)

b)

Figure 1: a) Short brush, where a local density approximation holds because the whole polymer is strongly spatially
correlated with the grafting point. b) For long enough brushes, far away from the grafting point the polymer backbone is
uncorrelated with the grafting point and explores environments that could be consistent with a different surface curvature.
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3 Height profile & curvature for our sinusoidally-modulated surface
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Figure 2: a) Height profile of a repeating unit of the sinusoidally modulated surface used in our simulations, together with
b) its corresponding curvature, for (a, λ) = (2.0, 10). The point x/λ = 1/2, represents the boundary between negative
and positive curvatures in our system.
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4 Self-assembly on generic surfaces with curvature varying along 2 dimensions

Figure 3: Representative snapshots of equilibrium patterns, viewed from the top perpendicularly to the x-y plane, for dif-
ferent combination of surface topographic parameters (a,λa) and (b,λb) for a surface varying as z= asin(x/λa)+bsin(y/λb).
Moving from left to right, the modulation along the y-direction changes as b = 0.5,1.0,2.0 whereas the other values are
fixed to a = 2.0,λa = 10 and λb = 10 (all lenght-scales are provided in reduced units, see tha main text). As it can be
clearly observed, even when the curvature varies both along x and y, the qualitative behaviour remains the same as
when curvature varies along a single dimension only, as discussed in the main text, with long surfactants segregating
in positive curvature regions and short surfactants in the negative curvature regions. Notice that surfaces whose curva-
ture varies along more than 1 spatial dimension (i.e., without cylindrical symmetry), can be studied using the additional
“locally-spherical” approximation, see the discussion and the equation in the first section of the Supplementary Informa-
tion. The asymmetry parameter used for this plot is α = 3, the polymeric surfactants are, like in the main text, perfectly
miscible, and described by a repulsive potential between beads which is the same independently from their type (here,
a11 = a22 = a12 = 18.75kBT ). The head beads of short surfactants are depicted in red, whereas in green those for the long
surfactants (tails not shown for clarity).
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5 Surface densities
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Figure 4: (color online). Local density (calculated via a kernel density estimations ) corresponding to the studies of Table
1, for different combination of surface topographic parameters a and λ0, and different surfactant lengths ratio l1 : l2 for
an otherwise perfectly miscible system where the repulsive potential between beads is the same independently from their
type. Note that the ratio of l1 : l2 = 2 : 2 are always depicted in pink, the ratio of l1 : l2 = 2 : 6 are always depicted in green,
whereas in blue those for the the ratio of l1 : l2 = 2 : 10. A Gaussian kernel is adopted for the density estimation, with a
width of 1.5σ in our studies, where σ is the size of a bead in our DPD description (see the main text for details).
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