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Overview of sheet model being cut and molecular dynamics simulations 

Based on our previously developed CG graphene model,[1] we performed coarse-grained 

molecular dynamics (CG-MD) simulations to explore the crumpling and uniaxial compression 

behaviors of graphene sheets with cuts. Informed from the underlying atomic graphene model, as 

shown in Figure S1a, the employed CG model of graphene is derived based on a 4-to-1 mapping 

scheme to preserve the hexagonal lattice geometry, where each CG bead with a mass of 48 𝑔/𝑚𝑜𝑙 

represents four carbon atoms. As listed in Table S1, the CG force field of the CG model includes 

bonded interactions, i.e., bonds 𝑉𝑏(𝑑), angles 𝑉𝑎(𝜃), dihedrals 𝑉𝑑(𝜙), and pairwise non-bonded 

interactions 𝑉𝑛𝑏(𝑟). Specifically, the bond, angle, and dihedral interactions are used to describe 

the elastic modulus and fracture strength, shear modulus, and bending rigidity of the graphene 

sheet respectively; the adhesion energy of the sheet is captured by the pair-wise non-boned 

interaction. Further details on the development of the CG model can be found in the earlier 

study.[1] 
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Figure S1. Representation of CG models of graphene sheets with different cutting patterns (kirigami patterns), i.e., 

a.) no cuts, b.) 7 cuts, c.) 15 cuts, d.) small Y cuts, and e.) big Y cuts, respectively. The zoom-in in a.) shows the 4-to-

1 mapping scheme of the CG graphene model, where the four connected carbon atoms (black atoms) are grouped into 

a CG bead (cyan bead) as highlighted in the red region. The zoom-in in b.) shows the cut pattern created by deleting 

the specific CG beads (orange dashed open circles). 

Table S1. Functional forms and interaction parameters of the CG graphene model. 

Interaction Function form Parameters 

Bond 𝑉𝑏(𝑑) = 𝐷0[1 − 𝑒−𝛼(𝑑−𝑑0)]2 for 𝑑 < 𝑑𝑐𝑢𝑡 𝐷0 = 196.38 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 

𝛼 = 1.55 Å−1 

𝑑0 = 2.8 Å 

𝑑𝑐𝑢𝑡 = 3.25 Å 
Angle 𝑉𝑎(𝜃) = 𝑘𝜃(𝜃 − 𝜃0)2 𝑘𝜃 = 409.4 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 

𝜃0 = 120° 
Dihedral 𝑉𝑑(𝜙) = 𝑘𝜙[1 − 𝑐𝑜𝑠(2𝜙)] 𝑘𝜙 = 4.15 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 

Non-bonded 
𝑉𝑛𝑏(𝑟) = 4𝜀 [(

𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] for 𝑟 < 𝑟𝑐𝑢𝑡  
𝜀 = 0.82 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙  

𝜎 = 3.46 Å 

𝑟𝑐𝑢𝑡 = 12 Å 

In this study, we investigated the internal structure and compressive strength of crumpled 

graphene sheets without cutting (no cuts) and with 7 cuts, 15 cuts, small Y cuts and big Y cuts 

patterns (Figure S1). All the MD simulations are carried out using an open-source software 



package Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS),[2] and the 

visualization of the MD simulation is achieved by Visual Molecular Dynamics (VMD).[3] 

Specifically, the energy minimization, equilibrium simulation, and crumpling simulation of the 

sheet are carried out sequentially before uniaxial compression and unloading simulations. First, 

the square graphene sheet with an edge length of 50 𝑛𝑚 is placed horizontally (𝑥𝑦-plane) in the 

center of the simulation box, which has dimensions of 500 𝑛𝑚 × 500 𝑛𝑚 × 500 𝑛𝑚; the periodic 

boundary conditions are applied to the system in all directions, with time step and simulated 

temperature of 6 𝑓𝑠 and 300 𝐾, respectively. The iterative conjugate gradient algorithm is utilized 

for the energy minimization,[4] and 2 𝑛𝑠 of NVT ensemble is simulated for the equilibrium of the 

system, which results in the final convergence of the total potential energy of the system to a nearly 

constant value.  

Then, as shown in Figure S2, the crumpling process is achieved by crumpling the sheet with 

a confining sphere containing the model. That is, a repulsive force 𝐹𝑐(𝑟𝑖) from the boundary of 

confining sphere is applied to the sheet within a certain cutoff distance when the sheet is inside the 

confining sphere. The confining force 𝐹𝑐(𝑟𝑖) can be written as: 

𝐹𝑐(𝑟𝑖) = {−𝐾𝑐(𝑟𝑖 − 𝑅𝑐)2, 𝑓𝑜𝑟 𝑟𝑖 ≥ 𝑅𝑐 0, 𝑓𝑜𝑟 𝑟𝑖 < 𝑅𝑐  (S1) 

where 𝑅𝑐, 𝑟𝑖, 𝐾𝑐 are the radius of the confining sphere, radial distance from the 𝑖th bead to the 

center of the confining sphere, spring force constant (𝐾𝑐 = 2.31 × 105 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙/𝑛𝑚3), 

respectively. The crumpling process of the sheet is achieved by decreasing the radius of the 

confining sphere 𝑅𝑐 at a certain speed (i.e., 50 𝑚/𝑠). More details on the sheet crumpling 

simulations can be found in earlier studies.[5][6][7] 



 

Figure S2. Schematic of the MD simulation of the crumpling process for CG graphene sheet with a.) no cuts and b.) 

15 cuts. Here, a confining sphere containing the sheet model is used to compress the sheet. As the radius of the 

confining sphere continuously decreases, the sheet gradually gets crumpled to the final sphere-like structure with a 

radius of 7.1 𝑛𝑚. 

It can be observed from Figure S2 that the pristine graphene sheet (no cuts) basically 

maintains a flat configuration in the initial equilibrium state, and it shows significant edge bending 

and self-folding behaviors during the crumpling process, which can also be learned from our 

previous studies.[5][7] Interestingly, for the graphene sheet with 15 cuts, it develops a stacked 

lamellar structure due to adhesion in the initial equilibrium state, and the stacking behavior 

intensifies and finally compresses into a crumpled sphere upon crumpling. It is evident that at the 

molecular level, the cutting controls the final crumpled structure of the graphene sheet by affecting 

its initial configuration and crumpling behavior. 

Upon obtaining the final crumpled spherical structure, we further conduct uniaxial 

compression and unloading simulations. To simulate the compression and unloading tests in the 



experiment, we replace the confining sphere with a confining cylinder of equal radius, whose 

height is equal to the diameter of the confining sphere. As shown in Figure S3, while maintaining 

the crumpled state (cyan) in the confining cylinder, two parallel rigid plates (gray) are added at the 

two ends of the 𝑧-axis at a distance 3.46 Å from the crumpled model, both of which are 

20 𝑛𝑚 × 20 𝑛𝑚 in size and the same material properties as the crumpled model. Afterward, the 

compression and unloading simulation of the crumpled model is achieved by defining a specific 

moving speed for the two plates with opposite or opposing directions, respectively. We specify the 

minimum separation between the two plates to be roughly 5 𝑛𝑚, which is to disregard the non-

bonded interactions between the plates. When applying equation 𝐹 = 𝐸𝑡2(2𝑅0/𝐻)𝛼, we choose 

parameter 𝜎 of the non-boned interaction as the thickness 𝑡 of the model, where 𝜎 = 3.46 Å is a 

length scale parameter related to the equilibrium distance of two nonbonded beads. In our study, 

thirteen different compression speeds ranging from 40 𝑚/𝑠 to 100 𝑚/𝑠 are employed and ten 

independent simulations are performed for each compression speed, to obtain the average value of 

the target properties of the crumpled model with different cutting patterns. 

 

Figure S3. Schematics of the MD simulations for a.) uniaxial compression and b.) unloading simulations. Here, the 

crumpled sheet with a radius of 𝑅0 (𝑅0 = 7.1 𝑛𝑚) is disposed between two rigid and parallel plates; the separation 

between the two plates is 𝐻. The compression and unloading simulations of the crumpled model is achieved by defining 

a specific moving speed for the two plates with opposite or opposing directions, respectively. 



Discussion of line statistics 

In our manuscript we discuss mainly the angular distribution of highly curved features fit by 

straight line segments.  We do so because our analysis of both the experimental and simulated lines 

contain unavoidable error, and the angular distribution is the least affected by these errors.  Error 

occurs because all high curvature structures may not form straight lines (though we fit with line 

segments), may not abruptly start or stop (they may taper beyond where our line segments fit), and 

may fluctuate in curvature from one end to the other (i.e. is it one long line or two short line 

segments oriented in the same direction?).  Both programs used in analysis would thus have to 

make choices deal with these issues that will always be, in some view, imperfect.  This said, data 

generated by these two separate analysis programs (one for simulations, one for experiments) is 

still meaningful, though in a more qualitative sense.  Therefore, we present some additional detail 

of the distributions here for the interested reader. 

 

Figure S4. Histograms of high curvature segment lengths.  a. A low density crumpled paper sheet, both uncut and cut 

15 times.  The cut sample shows a reduced ‘tail’ of longer length structures.  b. A high density paper crumple.  Again, 

a reduction in long segments is evident.  c. Segments from a typical MD simulations. Simulations also show a large 

reduction in long segments when cuts are present.  



 

Figure S4 shows typical distributions of lengths of high curvature structures for low density, high 

density and simulated crumples.  For all data we see a similar loss of long structures in cut sheets, 

directly vindicating the main goal of our study.  Interestingly, the distributions are fairly similar 

between cut and uncut films at smaller line lengths.  The higher density data of the simulations, 

however, shows a peak at lower line lengths for cut sheets than uncut sheets.  We believe that the 

difference is likely related to the plasticity of the paper sheets.  In short, they are much less free to 

re-arrange as additional stress is added to the system. 

 

Additionally, both the number of segments and the total length of high curvature segments is larger 

in uncut sheets when compared to cut sheets at similar densities.  Given that there is some evidence 

that the total length of high curvature features correlates with the effective stiffness of crumpled 

matter, this observation can explain the small differences in effective modulus observed in our 

study [8].  In summary, cuts affect the structure of the high-curvature network within a crumple 

by changing the angular distribution and removing long range structure, but does not significantly 

change the overall mechanics of the crumpled sheet. 

 

Discussion of total line length 

Gottesman et. al [8] have noted that the total line length (of creases measured in uncrumpled sheets 

similar to what is presented in this manuscript) correlates well with the compressive behaviour of 

a crumple.  Unsurprisingly we also find that the total length of lines is proportional to the peak 

density of the crumple (note: density for us is more reasonable than a scaled gap as in [8] because 

we do not fix radius as they do).  While Gottesman et al. only examined pristine sheets, we find 

very little difference with the cut sheets, save that the lengths at comparable densities are slightly 

smaller.  As the simulations define “lines” differently than the experiment, the trends are slightly 

different as one would expect.  Figure S5 shows the basic result. 



 

Figure S5. Total line length as a function of crumple density.  Both paper and simulated data show an upward trend 

with density.  Simulations and paper crumples differ because the way a line is measured differs between the two. 

 

   

Discussion of d-cone populations 

It is difficult to define, from the uncrumpled sheet, where exactly d-cones may have been at the 

point of peak compression.  However, it is reasonable to assume this number would be proportional 

to the number of line-ends observed in the analysis of the uncrumpled sheet.  One observes that 

many lines will begin or end on a cut or sheet edge, which would likely mean that one d-cone has 

escaped the sheet and exists only virtually.  Given this hypothesis, it is then possible to examine 

changes in the population of d-cones by simply examining the marked sheets (in experiment or 

theory).   

As a preliminary step in such an analysis, Figure S6 shows the fraction of virtual to total d-cones 

in cut and uncut sheets.  Uncut sheets at various crumpled densities tend to have less than 5% of 

lines interacting with a sheet edge.  On the other hand, cut sheets typically have somewhere 

between 40% to 90% of lines interacting with an edge, trending to higher numbers at lower density.  

Clearly the “current” location of d-cones is not significant to the crumple’s resistance to 

compression as, once again, very little difference is noted in terms of macroscopic compression of 

the crumple.  This is not inconsistent with the conceptual model discussed in the manuscript, 

because the folds still represent the path a d-cone has taken through the sheet.  



 

Figure S6.  Fraction of line ends occurring off the sheet as a function of crumple density. 

 

Discussion of statistical tests 

In the main manuscript we claim to see very little difference between cut and uncut crumpled 

sheets based on subjective observation of quantitative data extracted from force-displacement 

curves.  However, while clear from observing the presented raw data, for example, the distribution 

of power-law fit exponents, some readers might be unsatisfied without a quantitative measure.  

Therefore, we present here a quantitative verification of our conjecture by considering p-test 

results comparing the null hypothesis (cut sheets are not statistically different from uncut sheets) 

with the data.  Specifically, we consider distributions of power-law fit exponents (𝛼) between cut 

and uncut sheets.  For paper, we find (using a Wilcoxon rank sum test implemented in MatLab) 

that p = 0.80 when comparing the power-law exponent of cut and uncut paper crumples.  This 

indicates that there is no significant difference between the two populations as the p value is 

considerably above any typical cut-off (say p=0.05).  For polycarbonate we find p = 0.38 and in 

the simulations we find p = 1.27×10-34.  Thus, only the simulations have the statistical power to 

clearly differentiate the two populations, likely due to the incredible control of sample-to-sample 

variation possible in a simulation. 
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