Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2023

Supporting Information for:

Investigating anionic surfactant phase diagrams using Dissipative Particle Dynamics: development of a transferable model

Authors: Sarah J. Gray, Martin Walker, Rachel Hendrikse and Mark R. Wilson* Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, United Kingdom.

* Author for correspondence. E-mail: mark.wilson@durham.ac.uk

1 Coarse graining for SDS and LAS

In this supporting information we detail the coarse graining, bonding, and bond angles used for the surfactant molecules.

Table S.2: DBS1

Table S.4: DBS6

2 SDS Phase Diagram

In order to simulate the systems of interest, that is lyotropic phases, we choose to model at 80°C. Figure S1 presents a simplified representation of the phase diagram, as a function of SDS concentration and temperature. At 80° we are able to model lyotropic liquid phases without the presence of hydrated crystalline structures.

Fig. S1: Simplified schematic phase diagram for SDS aqueous solutions, adapted from Kékicheff et al.¹.

3 Lamellar layer spacing for LAS

Fig. S2 shows a plot of the lamellar layer spacings (presented in Table 5 in the main text) in order to highlight the change in spacing as a function of concentration. There is generally a decrease in spacing with concentration. One exception to this is the spacing calculated at 50% for DBS6, which experimentally is close to the region of the phase diagram in which two lamellar phases coexist.

Fig. S2: Lamellar layer spacing of LAS isomers. Also shown are horizontal lines indicating the available spacings, obtained from Eq. 11 in the main article.

4 Extension to LAS - a_{ij} parameters

bead	molecule	δ^{D}	δ^{P}	δ^{H}	$V_{\rm m} ~({\rm cm^3/mol})$
Н	dimethyl sulphate	17.7	17.0	9.7	94.7
Т	propane	13.4	0	0	89.5
W	water	15.5	16.0	42.3	54.0
В	benzene	18.4	0.0	2.0	89.4

Table S.5: Hanson solubility parameters (units $MPa^{1/2}$)² used in calculation of benzene bead interactions.

Equation 7 (see main article) can be used along with the values in Table S.5 in order to calculate the Flory-Huggins parameters χ (see Table 4 in main article). The bead with greater abundance is taken as bead *i* in any bead pairing.

4.1 *a*_{BW}

The interaction between benzene and water (a_{BW}) is determined via a comparison with the interaction of tail and head beads with water $(a_{TW} \text{ and } a_{HW})$. This is calculated using the following relation:

$$\frac{a_{\rm TW} - a_{\rm BW}}{a_{\rm TW} - a_{\rm HW}} = \frac{\chi_{\rm TW} - \chi_{\rm BW}}{\chi_{\rm TW} - \chi_{\rm HW}}.$$
(1)

This produces a value of $a_{\rm BW} = 40.4$ which we round to the nearest integer as $a_{\rm BW} = 40$.

4.2 *a*_{BH}

For the interaction of benzene with the head groups, we compare with the $a_{\rm HT}$ interaction and selfinteraction value of $a_{ii} = 25$, calculating as

$$\frac{a_{\rm BH} - a_{ii}}{a_{\rm TH} - a_{ii}} = \frac{\chi_{\rm BH} - \chi_{ii}}{\chi_{\rm TH} - \chi_{ii}}.$$
(2)

Using that $\chi_{ii} = 0$, we find a value of $a_{BH} = 44.18$, which is approximated to $a_{BH} = 45$ for simplicity.

4.3 *a*_{BT}

The Flory-Huggins parameter for benzene-tail interactions is calculated to be very small ($\chi_{ii} = 0.792$), as expected because benzene is very soluble in hydrocarbon solvents. Hence we have approximated the benzene-tail interaction to be comparable to the (tail-tail) self-interaction, i.e. $a_{\rm BT} = a_{ii} = 25$.

References

- P. Kékicheff, C. Grabielle-Madelmont and M. Ollivon, Journal of colloid and interface science, 1989, 131, 112–132.
- [2] C. M. Hansen, Hansen solubility parameters: A user's handbook., CRC Press, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742, 2007.