Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Calorimetry of phase transitions in liquid crystal 8CB under shear flow

Taro Yamamoto, Yuki Nagae, Tomonari Wakabayashi, Tadashi Kamiyama, Hal Suzuki*

Department of Chemistry, Kindai University, Higashiosaka, Osaka 577-8502, Japan * E-mail: h_suzuki@chem.kindai.ac.jp

Figure S1 A photograph of the developed DSC equipped with a shearing system.

Figure S2 DSC curves of 8CB without shear flow (a) obtained by the developed calorimeter and (b) by a commercial DSC (Rigaku DSC8230).

Figure S3 Comparison of \dot{W}_{shear} and the DSC curve in the (a) cooling and (b) heating scan. The blue dotted curves are the \dot{W}_{shear} vertically shifted.

Figure S4 Demonstration of the three ways to determine the transition temperatures; the initiation temperature of the peak (T_i) , the extrapolation start temperature (T_e) , and the peak top temperature (T_p) .

Figure S5 Enthalpy changes at the N-I ($\Delta_{N-I}H$, filled circles) and S_A-N transitions ($\Delta_{A-N}H$, unfilled circles) at various shear rates.