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1 Contributions of pendant drop’s shape
As described in the Main Text, the geometry of the experimental
setup is that of a pendant drop contained in a hollow glass cylin-
der closed on the top and opened on the bottom. Because of the
pinning of the contact line on the cylinder lower edges, the air-
water interface has a curvature that can be tuned by changing the
amount of water contained in the cylinder. Both the optical anal-
ysis to recover the particle’s coordinates and the interpretation of
the measured dynamics in the Main Text are made assuming a
flat air-water interface. The effect of the interface curvature must
therefore be discussed, also taking into account its change over
time due to water evaporation.

We first evaluated the evaporation by following over time the
center of a pendant drop by moving the microscope focal plane
with a piezoelectric actuator in order to always keep the air-water
interface on focus. In this way we evaluated a displacement ve-
locity of 0.2 µm/s of the interface due to evaporation, in a sys-
tem where no precautions are taken to reduce evaporation. We
then repeated the measurement by adding a protective flexible
chamber as in Fig. 1 of the Main Text. The interface velocity
in presence of the chamber is reduced to 0.05 µm/s. During the
measurements we detected variations around this average of less
than 10% for typical room temperature variations between 20◦C
and 28◦C and relative humidity of 50-60% (the average at Mont-
pellier, France). As a consequence, we estimate that during the
time interval 103 −104 s of a typical experiment, the center of the
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pendant drop rises by about 0.05-0.5 mm. Since working with a
perfectly flat interface for the entire duration of an experiment
is not possible, in the experiment we use a convex interface in a
way to bring particles towards the center of the drop where the
interface is orthogonal to the optical axis. To ensure that the in-
terface remains convex for all the experiment duration the center
of the drop is initially fixed at an height 1 mm lower than the
glass cylinder lower edges.

The interface curvature in principle affects the experimental
data in two main ways. First, it introduces a tilt angle between
the optical axis and the normal to the interface everywhere ex-
cept for the drop’s center, thus introducing a parallax error in the
measurement of the displacement of x′ and y′, since this refer-
ence system parallel to the surface is different from the one of the
image plane. To assess this contribution we evaluated the drop
shape for the experimental parameters. Starting the experiment
with ellipsoids near the drop center and considering the exper-
imentally observed drifts, in the worst case scenario where the
maximum observed drift moves the particle along the radial di-
rection, the maximum distance from the drop center a particle
can reach during its trajectory is still lower than 300 µm. The
relative difference on the travelled distance in the image plane
orthogonal to the optical axis and in a curved reference system of
the drop is less then 0.01%, and thus negligible.

Besides for the parallax error, drop curvature in principle also
affects particle dynamics as it introduces a confinement effect in
the x′y′ plane. Because of the curvature radius much larger than
the particle size, however, this effect is negligible as the MSDs
appear linear with any saturation at large lag-time.

2 Details on the ellipsoids tracking

Dedicated algorithms have been designed specifically for the
tracking of the interference pattern of ellipsoidal particles. The
direction of the major axis projection on the plane parallel to the
air-water interface is first found looking for the fringe pattern
axial symmetry in the binarized version of the acquired image
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(Fig.2b of the Main Text). Binarization is made with an intensity
threshold 50% larger than the average frame intensity, in order
to only visualize the bright interference maxima. Such maxima
are then identified as the regions of connected pixels having area
larger than a given value. For each region we calculate the cor-
responding geometrical center. We then consider the ensemble of
lines connecting couples of geometrical centers. Finally the fringe
pattern major symmetry axis is selected as the line which min-
imizes the sum of line-geometrical centers distances. From the
orientation of the found symmetry axis, the instantaneous value
of the azimuthal angle φ is determined with a precision of about
0.3◦. A local Cartesian coordinates system xyz is also defined,
where x is the direction parallel to the ellipsoids major axis, y is
the orthogonal direction in the interface plane and z is the direc-
tion orthogonal to the interface.

In order to access the other degrees of freedom, for each frame
i the intensity profile Ii (x̃) (Fig.S1) along the determined sym-
metry axis is extracted for both the blue and red channels of the
camera. There, x̃ is defined as the distance from the center of the
interference pattern x̃ = 0 along the symmetry axis. According to
this definition, x̃ = 0 corresponds to the coordinate of the point of
the ellipsoid closer to the air-water interface.

From each profile Ii (x̃), the positions x̃e of the intensity extrema
(maxima and minima) are identified through a parabolic fit of the
local maxima and minima and the ellipsoid profile zi (x̃e) along
its major axis is reconstructed (Fig.S1b). Reconstruction is made
considering that between two adjacent extrema there is a differ-
ence in z of λ/4n, where λ is the light source wavelength and
n is the water index of refraction. The reconstructed profile de-
pends on the ellipsoid semi-axes a, b, the coordinates of its center
of mass x̃0, z0, and its orientation given by the zenithal angle θ

through the analytic expression:

zi(x̃) = z0 −
δ x̃β
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In order to reduce the number of fitting parameters, they are
recovered in two separated steps. First, for a given trajectory all
the profiles zi (x̃e) are averaged in order to obtain a single profile
Z (x̃e) (Fig.S1c) having a zero zenithal angle (θ = ⟨θ⟩ = 0) and
zero x̃0-position (x̃0 = ⟨x̃0⟩ = 0). In this conditions the Eq.(S.1)
results in:

z(x̃) =< z0 >−b

√
1− δ x̃2

a2 (S.5)

The best fit of Z (x̃e) with Eq.S.5 allows to recover a and b with
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Fig. S 1 Reconstruction method to measure the semiaxes of an ellipsoid.
(a) The position x̃e of the minima (violet points) and maxima (green
points) along the ellipsoid’s long axis is found. (b) Knowing the differ-
ence in z between two adjacent extrema is λ/4n, the z(x̃e) profile on the
ellipsoid is reconstructed. (c) The latter operation is made for all frames
on the same particle and the x′e positions corresponding to the intensity
extrema are obtained as a function of time. For each extremum the time
average position is then evaluated (red-blue points). These are the points
fitted (black line) to recover the moduli of the semiaxes of the ellipsoid.
The orthogonal coordinates reported in (b,c) are the relative value of
the particle-interface distance. The exact particle-interface distance is
obtained adding integers multiples of λ/2n, where m = 0,1, ... is found by
crossing the information coming from the two light sources as described
in Refs.1,2.
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a relative precision of about 10%. Once the semi-axes are deter-
mined, single frame profiles zi (x̃e) are fitted with Eq.S.1 reducing
the free parameters to the instantaneous values of z0, θ and x̃0.
The uncertainty over a and b mainly affects x̃0,i and θ , whose rel-
ative precision is of the same order of that of a. From the analysis
of both red and blue channels, the orthogonal coordinate z0 of the
ellipsoid center mass is univocally determined frame by frame as
described in Refs.1,2 with a precision of few nanometers. From
the position of x̃0, the coordinates of the ellipsoid center of mass(
x′0,y

′
0
)

in the laboratory reference system are obtained. Finally,
the instantaneous displacements ∆xi and ∆yi between frame i−1
and frame i of the ellipsoid in the directions parallel and per-
pendicular to its major axis projection in the interface plane are
retrieved as:

∆xi = ∆x′i cos φ̄ +∆y′i sin φ̄ (S.6)

and

∆yi = ∆y′i cos φ̄ −∆x′i sin φ̄ , (S.7)

with ∆x′i = x′0,i − x′0,i−1, ∆y′i = y′0,i − y′0,i−1 and φ̄ = (φi +φi−1)/2.

From the time evolution of the retrieved translational and rota-
tional coordinates eventual drifts are removed by subtracting the
average displacement. The instantaneous translational (vx,vy and
vz) and angular (ω and ωφ ) velocities are evaluated multiplying
by the image acquisition frame rate the difference between two
consecutive values of the correspondent coordinates.

3 Finite numerical aperture contribution to the in-
terference pattern

In Fig.3a of the Main Text it can be seen a significant decrease of
the interference pattern contrast when moving from the pattern
center to the tips along the major axis. This can only in part be
explained considering the limited coherence length of the light
source. In general, indeed, several corrections have to be taken
into account to quantitatively explain the intensity observed in
DW-RIM. These points have been discussed by several authors for
the quantitative determination of a z-profile in Reflection Inter-
ference Contrast Microscopy (RICM)3. This is very important in
biophysics where the objectives are usually large with a high nu-
merical aperture (NA>1), which strongly modulates the intensity
contrast and stretches the interferogram.

Concerning our setup and experimental conditions, we have al-
ready discussed these effects for spheres imaged with a 100X long-
working distance objective in a former work (see SI of Ref.1).
There, we have shown that the positions of the visible interfer-
ence maxima and minima were not very sensitive to the imper-
fect monochromaticity of the light. They were more sensitive to
other effects such as the finite numerical aperture of the objective,
which implies the presence of tilted incident rays incoherently in-
terfering. Moreover, the curvature of the bead also modifies the
tilt of the reflected rays depending on the point of incidence of the
rays on the surface. Both phenomena were included in a numer-
ical computation for the sphere. In the current work, these cor-
rection effects are weaker as we worked (i) with ellipsoids and

(ii) with a long-working distance 50X objective with NA of 0.5
(illumination numerical aperture INA∼ 0.45). With an ellipsoid,
indeed, the curvature effect is much weaker since we study the
interference only along the major axis in a limited region around
the origin. Even considering an aspect ratio smaller than the low-
est aspect ratio considered in the present work (A ∼ 5), a bead
of typical initial radius 4.35 µm gives an ellipsoid with the (rel-
evant) principal curvature radius of 63 µm at the origin. At half
semi-major axis distance, the tilt of the ellipsoid surface is only
about 6◦. Where the analysis stops (typically at 0.75a) we found
13◦. For the ellipsoid shown in Fig.S1 the values are respectively
3.8◦ and 7.4◦.
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Fig. S 2 Simulated interference pattern along the major axis of an ellip-
soid (a = 21.6 µm, b = 2.46 µm) located at 29 nm +m̃rλr/(2n) from the
interface either considering (blue line) or not (green line) the effect of
the experimental finite numerical aperture.

Due to the limited NA and INA< 0.5, we are closer to quasi-
normal illumination and the stretching effects related to the NA
can be neglected. For illustration, we computed the interference
pattern along the major axis expected for the ellipsoid examined
in Fig.S1, taking into account the finite numerical aperture of the
objective. The result of the computation is compared in Fig.S2
with the one obtained in the simple normal illumination approxi-
mation (implicitly used in our data analysis approach). As it can
be seen, the numerical aperture is responsible for a strong de-
crease of contrast but does not change significantly the position
of the considered extrema, thus justifying the obliteration of finite
NA contribution in the analysis of the experimental data.

4 Surface incompressibility and no-slip BC for an
Ellipsoid

The 2D flow on the free interface induced by a vertical movement
of an ellipsoidal particle is expected to have the same symme-
try of the particle, i.e. elliptical. Using elliptical coordinates ν

and µ along the confocal ellipses and hyperbolae respectively, the
particle-induced flow field at the interface has components vν and
vµ . The symmetry of the problem imposes vν = 0. The 2D incom-
pressibility conditions results in:

vµ =
K

d
√

1
2 (cosh2µ − cos2ν)

, (S.8)
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where K is an integration constant and d is the distance of one
of the hyperbolae/ellipses focus with respect to the coordinate
origin. In order to regularize the flow field vµ at the origin
(ν = µ = 0) one need to impose K = 0. As a result, the bound-
ary conditions due to 2D flow incompressibility coincide with the
ones of no-slip, i.e. vν = vµ = 0.

5 Simulation details

The problem addressed in this work is a freely-buoyant rigid el-
lipsoid suspended in an incompressible Newtonian liquid in prox-
imity of an air-water interface. A schematic representation of the
investigated system is shown in Fig.1 of the Main Text. A Carte-
sian reference frame with the origin at the air-water interface and
with the z−axis orthogonal to the interface is considered. The
particle is positioned with its center of volume r on the z−axis.
The normalized distance between the particle center of volume
and the interface is defined as h = z0/2b, and the angle between
the spheroid major axis and the interface normal vector n is de-
noted with θ . Without loss of generality, the x-axis of the refer-
ence frame is selected coinciding with the projection along z of the
ellipsoid major axis on the interface. The spheroid aspect ratio is
defined as A = a/b, with a and b the major and minor semi-axes,
respectively.

Assuming creeping flow conditions and incompressible Newto-
nian fluid, the fluid dynamics governing equations are given by:

∇ ·v = 0 (S.9)

∇ ·σ =−∇p+µ∇
2v = 0 (S.10)

where σ = −pI + 2µD is the stress tensor with D the rate-of-
deformation tensor and I the unity tensor, v, p, and µ are the
velocity, pressure, and viscosity of the fluid, respectively.

The boundary conditions read as:

v = u+ω × (rs − r) on Γp (S.11)

v = 0 on Γw (S.12)

where rs − r denotes the distance vector of a point rs on the el-
lipsoid surface from the ellipsoid center of volume, u and ω are
the particle translational and rotational velocities, Γp is the par-
ticle surface, and Γw collects all the external boundaries of the
computational domain except the interface (corresponding to the
xy-plane). The first equation accounts for the rigid-body motion
of the particle, whereas the second equation expresses the quies-
cent conditions of the fluid ‘far’ from the particle.

The air-water interface, denoted by Γs, is assumed to be flat
and a perfect slip condition is applied4:

v ·n = 0 on Γs (S.13)

(I−nn) · (σ ·n) = 0 on Γs (S.14)

In this work, we will also investigate the effect of the no-slip
condition Eq. (S.12) at the interface.

Finally, under inertialess conditions, the force and torque acting

at the particle surface are:

F =
∫

Γp

σ ·ndΓp (S.15)

T =
∫

Γp

(rs − r)× (σ ·n) dΓp (S.16)

where n is the local normal to the particle surface, pointing to the
fluid.

We solve the governing equations by applying a single non-
zero component of the combined force/torque vector (F,T) and
compute the six components of the translational and rotational
velocity vector (u,ω) as discussed in the Main Text.

The system of equations is numerically solved by a standard
Galerkin-Finite Element method in the cubic box with length L5.
A boundary-fitted mesh with tetrahedral elements is used. A
quadratic continuous interpolation (P2) is used for the velocity
and a linear continuous interpolation (P1) is used for the pres-
sure. Mesh convergence has been verified for all the calculations
presented in this work. A finer mesh is required when the parti-
cle is close to the interface in order to accurately solve the fields
between the spheroid and the interface. The total number of el-
ements varies between about 70000 and 160000. To guarantee
unperturbed conditions far from the particle, the length L must
be chosen sufficiently larger than the particle size. We found that
a value of L = 20a is sufficient to neglect the effects of the virtual
walls.
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Fig. S 3 Supplementary table. Experimental data for each single measured ellipsoids reported for increasing aspect ratio. In the columns are reported:
the aspect ratio A, the major (a) and the minor (b) semi-axes, the radius req of a sphere of same volume, the particle-interface average gap distance zgap

and the five measured normalized mobilities with a normalisation factor of 2bη (translational mobilities) and (2b)3
η (rotational mobilities). Missing

values correspond to datasets where noise makes the MSD analysis unreliable. Those elements are excluded from the averages reported in the Main
Text.
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