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1 Chemical Potential Driven Flux through a Mem-
brane

1.1 Chemical Potential
Chemical potential, µ, is defined as,

µ = µo +RT ln(χlγl) (1)

where µo is the reference chemical potential, χl is the mole frac-
tion of the solvent, and γl is the activity coefficient of the solvent,
R is the universal gas constant, and T is the temperature.

1.2 Diffusive Flux Through a Membrane
Flux of the diffusive species water, Jw, is defined as,

Jw =−Lw
dµw

dx
(2)

where, Lw is the mobility of the diffusive species water, and dµw
dx is

the driving force of water, described by the change in the chemi-
cal potential of water across the thickness dimesnion of the mem-
brane, x.

Jw ∝
−dµw

dx
∝ −µ2 −µ1

l
(3)

The flux of water across a membrane, is therefore proportional to
the chemical potential difference across that membrane. This can
be described by the difference of the chemical potentials of solu-
tion separated by the membrane, µ1 and µ2, which has a thickness
of l.

This difference in chemical potential on either side of the mem-
brane and resulting non-equilibrium condition, serves as the driv-
ing force for the flux of water across the membrane toward chem-
ical equilibrium between solutions separated by the membrane.
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To understand the difference in chemical potential between the
encapsulated salt solution and pure water reservoir, the chemical
potentials of each of the individual solutions must be defined. For
low solute concentrations, the activity coefficient of water, γw, is
approximately 1. Here χw,pure describes the mole fraction of pure
water, and χw,salt solution describes the mole fraction of the water
in the salt solution.

µw,pure = µo,water +RT ln(χw,pure) (4)

µw,salt solution = µo,water +RT ln(χw,salt solution) (5)

Subtracting equation 5 from 4, will result in the chemical poten-
tial difference between the pure water and salt solution.

µw,pure−µw,salt solution =RT ln(χw,pure)−RT ln(χw,salt solution) (6)

The mole fraction of solvent in pure water is χw,pure = 1, so that
RT ln(1) = 0. The chemical potential of pure water, µw,pure, can
alternatively be referred to as the reference chemical potential for
water, µo, and therefore we denote µw,salt solution, as µ. Combining
these statements with equation 6 results in:

µ=µo +RT ln(χw,salt solution) (7)

For a solution with a low solute mole fraction, χsalt, the mole
fraction of solvent, χw,salt solution, is relatively high. This solvent
mole fraction can alternatively be expressed as 1−χsalt.

µ = µo +RT ln(1−χsalt) (8)

For small values of χsalt, a Taylor series expansion can be used,
yielding

µ = µo +RT ln(−χsalt) (9)

This salt mole fraction can be expressed as the ratio of moles of
salt present, nsalt, to the total moles present in solution, nsalt +
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nwater.

µ = µo +RT ln
(
− nsalt

nsalt +nwater

)
(10)

The osmotic potential of a solution, as defined by Van’t Hoff, de-
scribes the pressure necessary to keep solvent from flowing into a
a concentrated region,

Π =−i
nsalt
V

RT, (11)

where i is the electronic dissociation factor of the ionic solute.

Combing equations 10 and 11, results in the following expres-
sion relating the chemical potential to the osmotic potential and
and solution properties, where Vm = V

nwater
and describes the molar

volume of water .

µ = µo +
ΠV

nwater
= µ0 +ΠVm (12)

The reference chemical potential depends on the systems’ pres-
sure, P = Patm + Pt . Here Patm describes the atmospheric pres-
sure, and Pt describes the turgor pressure or hydrostatic pressure
on one or both sides of a membrane. Understanding this depen-
dence, Equation 12, can be written to explicitly indicate pressure
terms,

µ = µ0(Patm +Pt)+ΠVm. (13)

At a constant temperature, Gibb’s free energy is defined as,
dµ = V dP − SdT . We assume constant temperature and con-
stant atmospheric pressure, allowing for the re-expression of 13
as,

µ = µ0(Patm)+ΠVm +
∫ Patm+Pt

Patm

Vm(P)dP (14)

For an incompressible substance, which is a reasonable approxi-
mation for water over the range of pressures we attain, this inte-
gral reduces to VmPt , resulting in,

µ = µ0(Patm)+ΠVm +VmPt (15)

This can rearranged to form the expression,

µ −µ0 =Vm(Pt +Π) (16)

Combining Equations 2 and 16, results in a pressure dependent
equation for diffusive flux of species i through a membrane, which
is expressed in units of mol

m2s .

Jw =
−LwVm

l
(Π+Pt) (17)

1.3 Diffusive Flux and Diffusivity Relationship

When discussing permeability and diffusion of a species, such as
water within a membrane, a common term referred to is diffu-
sivity, Dw, which describes the rate at which a species can diffuse
through the area of a membrane [ m2

s ]. Diffusivity is the term that
relates the diffusive flux, Jw, to the concentration gradient, duw

dx
that serves as the driving force, as opposed the the chemical po-
tential difference as in the previous section.

Jw =−Dw
dCw

dx
(18)

Diffusivity, Dw, can be related to the mobility, Lw of water within
the membrane. From the definition of chemical potential, dif-
fusive flux can be redefined in terms of mole fraction of water,
χw =CwV , where Cw is the concentration of water, in volume V .

Jw =−LwRT
dlnχw

dx
=−LwRT

dln(CwV )

dx
=−LwRT

Cw

dCw

dx
(19)

This results in the following relationship for mobility in terms of
diffusivity,

Lw =
DwCw

RT
(20)

1.4 Permeability and Diffusivity

In the determination of the rate of flux of a species through a
memembrane, two terms are commonly used: diffusivity and per-
meability. However, these terms are not interchangeable. The
diffusivity describes the flux of the water while it is within the
membrane, but the permeability encompasses the full membrane,
including transport of molecules from the surrounding reservoir
into the membrane and transport out of the membrane to the
other reservoir. For this reason, in membrane literature, the diffu-
sive flux of water is often described using permeability coefficient
prefactor, as follows,

Jw =−Pw
dCw

dx
(21)

In this case, Pw, the permeability coefficient is equal to,

Pw = DwKw:membrane (22)

where Dw is the diffusivity that was described in the previous sec-
tion, and Kw:membrane is known as the sorption or partition coef-
ficient of water and the membrane. Here, the sorption describes
the ratio of concentrations of two separate components in in the
membrane (the membrane matrix, and the diffusive species). In
our case, water must dissolve into the membrane from the feed
solution, diffuse through the membrane’s thickness and then dis-
solve out of the membrane into the chamber solution. This sol-
ubility quantity describes how much water can dissolve into the
membrane and will in turn affect the rate of permeation. As we
are unable to measure the the content of water in our films, so
we can only fit the permeability coefficient. Therefore, we rede-
fine our mobility relationship, using the permeability coefficient,
instead of diffusivity, as the rate of diffusion of water through
our membrane which also depends on the sorption of water into
PDMS.

Lw =
PwCw

RT
(23)

1.5 Volumetric Flux Through a Membrane

To relate the volume of a species diffusing across a membrane of
a given area, we must relate the diffusive flux, Jw, expressed in
units [ mol

m2·s ], to a volumetric flux, which we will refer to as JQ,

expressed in units of [ m3

m2·s ]. This can be done by relating the
diffusive flux, to the molecular weight of the the solution, Mw,
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and the density of the solution ρ.

JQ =
JwMW

ρ
(24)

Using this new volumetric flux relationship, we define a volumet-
ric diffusivity for water through our membrane, using the rela-
tionships we have described thus far. We combine Equations 17,
20, and24, resulting in,

JQ =−PwCw

RT
VmMW

ρ

(Π+Pt)

l
=−Lw

VmMW

ρ

(Π+Pt)

l
(25)

We define a volumetric mobility, which we denote as L, describing
the mobility rate of a volume of water to diffuse through the an
area of the membrane per the pressure applied to the membrane.
This term is directly related to the permeability coefficient. L is
expressed in units [ m2

Pa·s ].

L =
PwCw

RT
VmMW

ρ
= Lw

VmMW

ρ
(26)

Our new equation expression describing volumetric flux through
the membrane, is defined as,

JQ =−L
l
(Π+Pt) (27)

Thus JQ is expressed in units [ m3

m2·s ] or [ m
s ].

2 Ion Diffusion Time Scale for Well-mixed Chamber

We determine that the actuation chambers that we study are well
mixed by calculating the time scale for a single sodium ion to
diffuse from one side of the chamber to the other. The height of all
the chambers is constant with dimensions of h = 110 µm. We use
this chamber height as the diffusion length scale, determining the
time for a single osmolyte ion to travel the from the membrane to
chamber floor. This is calculated assuming Fickian diffusion and
the Einstein-Smoluchowski Equation:

D =
l2

2t
(28)

where D is the diffusivity of the species, in this case a sodium
ion, l is the diffusion length which in this system in the height
of the chamber (h = 110 µm), and t is the time it takes for this
species to diffuse across this length scale. For sodium ions Na+

the diffusivity in water is D = 2.098× 10−9 [units: m2

s ].1 Using
this information, we solve for t = 2.88 s. This short time scale
for diffusion across the initial depth of the chamber, leads to our
assumption that osmolyte ions in our system can diffuse away
from the membrane quickly, meaning that the chamber is well-
mixed.

3 Osmotic Pressure Term

The change in osmotic pressure due to the water flow into the
chamber is described by the difference in osmotic potential be-
tween the chamber and the surrounding feed solution, at a given
time.

∆Π(t) =−iRT
(

ns

V (t)
−Cfeed

)
(29)

The explicit time dependence of this expression can be removed
by non-dimensionalizing the volume term by the initial cham-
ber volume V0, which is the only time dependent term. This
nondimensionalized term is the volume ratio of the chamber de-
scribed by V (t) = V0

V
V0

. At any given instant, the entire volume
of the chamber (both the volume under the membrane in ad-
dition to the undeformed chamber volume) is described by the
non-dimensionalized volume multiplied by the initial chamber
volume. The osmotic pressure term can therefore be described
by the following expression, removing the time-dependent terms.

∆Π =−iRT
(

ns

(V/V0)V0
−Cfeed

)
(30)

The initial concentration of salt solution encapsulated into the
chamber, C0, is defined as the initial molar quantity of salt in the
chamber, ns, divided by the initial volume of the chamber, V0. The
term ns

V0
can be replaced by C0, and factored out of both osmotic

pressure terms.

∆Π =−iRTC0

(
1

V/V0
− Cfeed

C0

)
(31)

Finally, as previously discussed the osmotic potential defined by
Van’t Hoff is Π =−iRTC, meaning −iRTC0 can be replaced by the
initial chamber osmotic potential Π0. This initial osmotic pressure
term can be factored out of the entire expression, to leave an
dimensionless osmotic pressure term.

∆Π

Π0
=

1
V/V0

− Cfeed
C0

(32)

However, in this system, we utilize a pure water feed solution
Cfeed = 0, meaning Cfeed

C0
= 0. This leaves the final form of the

osmotic pressure term as,

∆Π

Π0
=

1
V/V0

. (33)

4 Linear Elastic Membrane Parameters
We develop a set of membrane bulge parameters to describe the
deformation and volume evolution of the system, in terms of lin-
ear elastic membrane deformation.

4.0.1 Linear Elastic Surface Area Parameter

Water flow through the selectively permeable membrane results
in membrane deformation. The volumetric flow of water is de-
pendent on the surface area of the membrane. This surface area
is changing as the membrane is bulging, and therefore we de-
termine the changing surface area with linear elastic behavior,
to understand the volume flow rate of water through the mem-
brane. This stretching is time-dependent, and just like previously
described, we aim to non-dimensionalize in order to remove the
explicit time-dependence. To describe the linear elastic bulging
and resulting membrane stretching we use spherical cap geome-
try relationships. The time-dependent change in this linear elastic
membrane is described by the following expression,

A(t) = πa2 +
4(V (t)−V0)

2

a4 , (34)
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where a, is the constant radius of the cylindrical chamber, V (t) is
the time dependent volume of the chamber, and V0 is the initial
volume of the chamber at t = 0.

The surface area term can be non-dimensionalized by elimi-
nating the time dependence of the volume. This deformation,
while explicitly time-dependent is also a function of the mem-
brane bulge volume. For this reason we introduce a dimension-
less membrane bulge volume parameter Ṽ that quantifies the ap-
proximate deflection of the membrane, with respect to the mem-
brane’s initial volume V0, initial area A0, and chamber radius a, as
described by:

Ṽ =
V (t)−V0

A0a
=

V
V0

−1
A0a
V0

=

V
V0

−1
A0a
V0

(35)

To nondimensionalize with the membrane deflection parame-
ter we must reconfigure the surface area expression to use the
same terms. First, we can nondimensionalize the entire expres-
sion, by the initial membrane surface area, A0 = πa2, to determine
the normalized change in surface and introduce the A0 term into
the expression. In addition to this we can remove the explicit
time-dependence using the same volume ratio term as described
previously, V (t) = V0

V
V0

. Employing both of these changes results
in the following expression:

A
A0

= 1+
4( V

V0
−1)2

A0a4

V0
2

, (36)

This expression can now be related to Ṽ the dimensionless mem-
brane deflection term, as Ṽ 2 can be factored out the expression
as follows resulting in a dimensionless membrane surface area
expression as a function of Ṽ .

A(Ṽ )

A0
= 1+

4A0Ṽ 2

a2 (37)

4.1 Turgor Pressure Parameter

As water flows through the membrane and the membrane de-
flects, turgor pressure Pt builds to maintain a static equilibrium.
To analytically understand this term with the use of linear elastic
mechanics, we follow the assumptions of the Timoshenko theory
describing the linear-elastic bulging of a spherical cap2 as a func-
tion of volume change while using the Nix approximation3. The
increasing volume due to the membrane bulging VBM using this
method is described by,

VBM =
πh
6
(3a2 +δ

2)≈ πa2δ

2
, (38)

where a is the radius of the membrane, δ is the vertical de-
flection of the membrane center. This Nix approximation holds
true for small deflections where δ ≪ a. This volume can also be
described by subtracting initial chamber volume V0, from total
time-dependent volume of the chamber and added volume under
the membrane V (t). This can be nondimensionalized to remove
explicit time-dependence using the same nondimensionalization

scheme we have utilized previously.

VBM =V (t)−V0 =V0
V
V0

−V0 =V0

(
V
V0

−1
)

(39)

In addition to this approximation, we use Timoshenko’s linear
elastic theory to describe the hydrostatic biaxial pressure in the
circular bulging membrane. This can also be referred to as the
linear elastic turgor pressure, Pt .

p− patm = Pt =
8Y l0δ 3

3a4 , (40)

where Y is the biaxial modulus of the membrane and l0 is the
membrane thickness. The biaxial modulus is related to Young’s
modulus as Y = E/(1−ν), and it is assumed that the membrane
used is incompressible, meaning ν = 0.5, simplifying the relation-
ship to Y = 2E.

The vertical displacement of the bulging membrane at the cen-
ter δ , can be solved for using Eqns. 38, 39, and expressed as a
function of the dimensionless deflection term Ṽ .

δ =
2V0(

V
V0

−1)

πa2 =
2( V

V0
−1)

A0
V0

= 2Ṽ a (41)

This new expression for δ is substituted into 40, resulting in
the following relationship for turgor pressure as a function of di-
mensionless stretch term Ṽ :

Pt(Ṽ ) =
16El02Ṽ a3

3a4 =
128

3
El0Ṽ 3

a
. (42)

However, this term still has units of pressure [Pa]. We normalize
the entire term the Young’s modulus E [units:Pa], resulting in
fully a nondimensionlized turgor pressure parameter.

Pt(Ṽ )

E
=

128
3

l0Ṽ 3

a
. (43)

5 Hyperelastic Membrane Parameters
We analytically solve for the bulging membrane deformation pro-
file, by parameterizing the undeformed membrane, and solving 5
ODE governing equations that give the solution for the deformed
profile as well as the turgor pressure, Pt that causes the defor-
mation. Here we discuss how we utilize the deflection profile
solutions to determine hyperelastic membrane deformation pa-
rameters utilized in the volume flow rate ODE.

5.1 Non-dimensionalization of membrane geometry param-
eters

We nondimensionalize all of our geometric membrane parame-
ters for ease of calculation. However, some of the finalized calcu-
lations for the stretched membrane constitutive responses rely on
quantities with dimensions (surface area, thickness, etc.). Here
we define the dimensionless term and their reliance on quanti-
ties with dimension, so going forward the two can be converted
between with ease.

We non-dimensionalize all initial geometric quantities by the
initial radius of the undeformed membrane a, resulting in the
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nondimensionalized terms,

r̃ =
r
a
, z̃ =

z
a
, ρ =

ρ ′

a
, ξ̃ =

ξ

a
, (44)

where the dimensional terms are r (the horizontal coordinate
system), z (the vertical coordinate system), ρ ′ (the initial unde-
formed parameterized membrane coordinates), and ξ (the mem-
brane arc-length). Therefore, we can further define dρ

dρ ′ =
1
a ,

which will aide in further verification of this nondimensionaliza-
tion method.

With respect to the nondimensionlizing volume, we maintain
the same nondimensionalization scheme previously defined for
the bulging membrane volume where,

Ṽ =
Vdeformed bulge

πa3 . (45)

To nondimensionalize all the governing equations it is impor-
tant to check that all stretch ratios with defined with new dimen-
sionless parameters remain dimensionless. First, we verify the
longitudinal stretch ratio defined by the change in arc-length ξ

over the change in the initial membrane position ρ ′, can be de-
fined the with the equivalent dimensionless terms (ξ̃ ,ρ).

λξ =
dξ

dρ ′ =
d(aξ̃ )

dρ ′

1
a

( dρ

dρ ′ )
=

dξ̃

dρ
(46)

We verify the latitudinal stretch ratio defined as the r-coordinate
over the initial membrane position ρ ′ is equivalent when defined
with r̃ and ρ.

λφ =
r
ρ ′ =

r̃a
ρa

=
r̃
ρ

(47)

5.2 Determining the Hyperelastic Bulge Volume

The dimensionless deflection Ṽ of the deformed profile is calcu-
lated from the device volume gained as a result of the bulging
membrane volume, which we input as a boundary condition to
solve for the deformed profile. The dimensionless volume is
described by the 5th governing equation (Eqn. 48) developed,
where Ṽ can be found via integration along the z̃ axis for ‘disks’
of radius r̃ = ρλφ .

dṼ
dρ

= λφ ρ
2 dz̃

dρ
(48)

5.3 Determining the Hyperelastic Bulging Membrane Sur-
face Area

We determine the dimensionless surface area of each deformed
profile A

A0
by integrating over a differential element of length

dξ̃ (ρ) of the deformed membrane from 0 ≤ ρ ≤ 1, given by the
expression,

dξ̃ (ρ) = λξ (ρ)dρ. (49)

This line segment is revolved from 0 ≤ φ ≤ 2π at a radius r̃ =
λφ ρ about the z̃-axis to obtain an expression for the dimensionless
area, Ã. This can be normalized by the initial dimensionless area,

Ã0 =
A0
a2 , yielding,

A
A0

=
Ã
Ã0

=
a2 ∫ 2π

0
∫ ξ̃ (1)

0 dξ̃ r̃dφ

A0
=

2πa2 ∫ 1
0 λ

ξ̃
(ρ)λφ (ρ)ρ dρ

A0
. (50)

5.4 Determining the Hyperelastic Bulging Membrane’s Aver-
age Thickness

We calculate the dimensionless inverse average membrane thick-
ness ⟨l0/l⟩ across the entire membrane area by multiplying the
expectation value〈

1
l

〉
=

2πa2 ∫ 1
0

1
l(ρ)λξ (ρ)λφ (ρ)ρ dρ

A
(51)

by the initial thickness l0. Where l(ρ) = l0λr(ρ) and invoking
incompressibility λrλξ λφ = 1 gives the final expression

〈
l0
l

〉
=

2πa2 ∫ 1
0 (λξ (ρ)λφ (ρ))

2ρ dρ

A
(52)

For completeness, we compare the average membrane thick-
ness values 1

⟨1/l⟩ and ⟨l⟩ and find that in our case, these quantities
are nearly interchangeable. First, we define

⟨l⟩=
2πa2 ∫ 1

0 l0λrλξ λφ dρ

A
=

πl0a2

A
= l0

A0

A
. (53)

Fig. S1 plots the inverse of Eqn. 51 and Eqn. 53 as functions of Ṽ
for the Solaris constitutive parameters and the reference chamber
geometry. At greater values of Ṽ , which corresponds to greater
membrane stretching, there is a small deviation between these
two approaches to calculating normalized average thicknesses.
The normalized average thickness given by 1

⟨l0/l⟩ is predicted to

be slightly less than the value predicted by 1
l0/⟨l⟩ . We use 1

l0/⟨l⟩ to
be more precise.

Fig. S1 Normalized average membrane thickness values predicted using
two methods ( 1

⟨l0/l⟩ : dark blue; 1
l0/⟨l⟩

: light blue) for bulging actuators
as a function of the dimensionless membrane bulge volume Ṽ . Predicted
values are very similar, with a slightly decreased thickness prediction
for 1

⟨l0/l⟩ , at larger values of Ṽ that correspond to greater membrane
stretching.
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To provide context for the thickness variation across a stretched
membrane in comparison to the average membrane thickness
(Eqn. (53)), we calculate membrane thickness distribution as
shown in Fig. S2. This distribution is provided for an extreme case
(standard geometery, highly stretched: λ= 2.5, Ṽ= 3.5) and pre-
sented as the deviation from the average thickness laverage = ⟨l⟩.
Under these conditions, there is a variation of ∼ 1 µm in thickness
across the membrane.

average biaxial stretch, തλ = 2.5

Fig. S2 The distribution of membrane thickness variation relative to the
average membrane thickness, l − laverage across the cross sectional area
of the membrane. λ = 2.5. Ṽ = 3.5. Standard geometry.

5.5 Determining the Hyperelastic Bulging Membrane’s Aver-
age Biaxial Stretch

We determine the average biaxial stretch in the bulging mem-
brane λ occurring across the membrane by integrating the biaxial
stretch at each discretized ρ value, defined by

λ (ρ) =
√

λξ λφ =

√
1
λr

, (54)

where the average biaxial stretch across the entire membrane, is
the expectation value determined by integrating the discretized
biaxial stretch about the surface area of the membrane (subsec-
tion 5.3),

λ = ⟨λ ⟩=
2πa2 ∫ 1

0

√
1
λr

λξ λφ ρ dρ

A
, (55)

divided by the surface area A.

We compare this expectation value average biaxial stretch to
an average using the evolution of surface area as given by

λ predicted =

√
A
A0

. (56)

These two methods, are both plotted in Fig. S3 to compare the av-
erage biaxial stretch in the membrane λ , determined using these
methods. The expectation stretch quantity ⟨λ ⟩, predicts only a
slightly increased biaxial stretch at increased membrane bulge
volumes of Ṽ ≥ 1.5. Therefore, for simplicity, and since biaxial
stretch is provided only for increasing insight, we use

√
A/A0 to

define λ .

Fig. S3 Average biaxial membrane stretch is predicted using two meth-
ods (⟨λ ⟩ (Eqn. 55: dark blue; 1

l0/⟨l⟩
(Eqn. 56): light blue) for bulging

actuators as a function of the dimensionless membrane bulge volume Ṽ .
While both of these predictions exhibit similar behavior, ⟨λ ⟩ begins to
show increased predictions at Ṽ ≥ 1.5.

5.6 Determining Hyperelastic Bulging Membrane Turgor
Pressure

Numerically integrating the bulging membrane deformation gov-
erning ODEs for a series of given dimensionless volume values Ṽ ,
yields a set of solutions, one of which is the applied dimensionless
pressure necessary to produce that deformation. The dimension-
less turgor pressure P̃t is defined as P̃t =

Pt a
C1l0 , meaning the turgor

pressure with units of [Pa] is Pt =
P̃tC1l0

a . We normalize the ap-
plied turgor pressure values by the membrane’s Young’s Modulus,
resulting in Pt

E .

5.7 Determining the membrane pre-stretch

Solving this set of hyperelastic governing equations to determine
the bulge deformation profile and turgor pressure, requires a set
of boundary values, one of which is the initial geometry condi-
tions of the membrane. It was seen throughout the imaging of
the actuating chambers, that for all sets of chambers (geome-
tries and materials), that the chambers were expanding slightly
at the connection point with the membrane. To accurately cap-
ture the deformation profile resulting turgor pressure, we must
set the appropriate pre-stretch ratio, λpre =R(Ṽ )/R0 as the bound-
ary value for the initial membrane radial geometry stretch ratio.
This means we set λφ = λpre at the membrane edge ρ = 1. This
pre-stretch ratio is determined by using ImageJ to measure the
radius of experimentally bulging actuator wells, and fitting a sec-
ond order polynomial function with an intersection at R/R0 = 1 to
determine the prestretch ratio of chamber as a function of the di-
mensionless volume Ṽ . The resulting fit functions for all chamber
geometries and materials are shown in Fig.S6.
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a) b)

Fig. S4 Mechanical constitutive response behavior for PDMS and PEO-PDMS. (a) Engineering stress T11 versus stretch ratio λ for PDMS uniaxial
tension test (blue circles), with Gent 3-parameter best fit response plotted (navy dashed line). (b) Engineering stress T11 versus stretch ratio λ for
uniaxial tension test (gold circles) for PEO-PDMS, with Gent 3-parameter best fit response plotted (orange dashed line).

a) b)

PDMS deformation profiles PEO-PDMS deformation profiles

Fig. S5 Mechanical constitutive bulging behavior for PDMS and PEO-PDMS. (a) User-defined deformation profile points for 3 separate bulge volumes
(blue x’s) and resulting deformation profile best fit (red circles) for PDMS from Gent-3 parameter best fit material parameters. (b) User-defined
deformation profile points for 3 separate bulge volumes (blue x’s) and resulting deformation profile best fit (red circles) for PEO-PDMS from Gent-3
parameter best fit material parameters.

5.8 Hyperelastic Membrane Mechanics Parameters

The necessary membrane mechanics parameters: fA(Ṽ ), fl(Ṽ (,
and fp(Ṽ ) are solved for by individually plotting A

A0
, l

l0 , and Pt
E

on a y-axis against Ṽ on the x-axis. Using a spline-fit fit object
function in MATLAB to reduce the computational cost of the fit
algorithm, a resulting function for each of these three curves were
determined per chamber and membrane geometry to solve for the
hyperelastic membrane mechanics parameters.

6 Hyperelastic Data Analysis

We use two mechanical test geometries to capture the hypere-
lastic behavior of PDMS and PEO-PDMS, determining that the
Gent 3-parameter model,4 captures the response of both mem-

brane materials, with different Gent constants for each. This in-
formation is used to model the mechanical response and turgor
pressure gain of the membranes during deformation. The Gent
3-parameter strain energy density function is as follows,

W =−C1Jm ln
(

1− J1

Jm

)
+C2 ln

(
J2 +3

3

)
, 4 (57)

with dependence on the first and second strain invariants J1 and
J2, that are defined as follows,

J1 = λ
2
1 +λ

2
2 +

1
λ1λ2

2
−3, (58)
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Fig. S6 Radial membrane pre-stretch effect (solid fit line) as a function of deformed bulge volume Ṽ , determined by fitting a second order polynomial
to a set of experimental data (circles) for (a) standard PDMS wells, (b) small radius PDMS wells, (c) thick membrane PDMS wells, and (d) standard
geometry PEO-PDMS well.

Table 1 Gent 3-parameter Model Material Constants

Material C1 (MPa) C2 (MPa) Jm E (Young’s Modulus) (MPa)
PDMS 0.0316 0.0297 26 0.37
PEO-PDMS 0.0714 0.0536 45 0.75

J2 = λ
−2
1 +λ

−2
2 +

1
λ1λ2

−2
−3, (59)

and assumes incompressibility (λ1λ2λ3 = 1), where λi is the
stretch ratio in each of the three principal directions. Additionally,
C1, C2 and Jm are materials constants that must be determined by
fitting experimentally determined mechanical test data to nomi-
nal stress equations derived from this strain-energy density func-
tion. C1 and C2 are mechanical constants (each with units of [Pa])
that describe the shear modulus G behavior of the material,

G = 2(C1 +C2). (60)

The nominal or engineering stress relation for uniaxial ten-
sion, T11,uniaxial, is dependent on the principal stretch ratio along
the axis of the applied tension, which is described as λ1 = λ .
Employing the assumption of incompressibility and the uniax-
ial geometry, the two other principal stretch ratios are given by

λ2 = λ3 = λ−1/2 such that

T11,uniaxial =
1
λ

(
C1Jmλ 2

Jm − J1
− 2C2λ−2

J2 +3
−2(C1 −

C2

3
)

)
. (61)

Simultaneously fitting the uniaxial test data (Fig. S4), and user
defined points on three membrane deformation profiles (Fig. S5)
to their respective deformation equations derived from Eqn. 57
using nonlinear least square regression in MATLAB, we solve for
C1, C2 and Jm for both PDMS and PEO-PDMS. The resulting fits
are shown in Fig. S4 (the uniaxial response), and Fig. S5 (the
fit to user-defined deformation profiles). The material constants
are summarized in Table 1. Additionally, we can determine the
Young’s Modulus E, of each material with these constants using
G (Eqn. 60) and the incompressibility assumption,

E = 3G. (62)
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Utilizing the 3 fit parameters as explained above, we find the
Young’s modulus E, of PDMS and PEO-PDMS are 0.37 MPa and
0.75 MPa, respectively.

7 Determining Bulging Membrane Permeability

We discuss the methods of solving for both stretch-independent
and stretch-dependent permeability. Here we provide additional
details on these methods and results.

7.1 Constant Linear Elastic Permeability fit

As discussed in the paper, we simultaneously fit experimental
PDMS actuation data to the model with linear elastic membrane
mechanics parameters, solving for a constant permeability value
as the fit parameter. As linear elasticity is only valid for small
deflections, we fit this model to actuation data where the biaxial
stretch, λ ≤ 1.4, which corresponds to volume ratio data V/V0 ≤
1.3. The resulting permeability fit parameter is 2.02×10−12 [ m2

s ],
which is shown in Fig. S7b, and fits the initial small deflection
response, but after the linear elastic volume ratio regime, this fit
overestimates the response. This permeability value is used to de-
termine the mobility value (Eqn. 26), and then the resulting time
constant (τ =− l0V0

LΠ0A0
) for the given chamber configuration that is

being used. When the experimental time is nondimensionalized
by the chamber’s respective time constant τ, the resulting volume
ratio actuation behavior collapses in this linear elastic regime for
all PDMS chamber configurations, when plotted in dimensionless
time t̃, as seen in Fig. S7a.

7.2 Constant Permeability fit

The constant Pw hyperelastic fit discussed in the paper, shows the
fit in comparison to the reference chamber conditions (a = 200
µm, l0 = 20 µm, C0 = 3 M). Using a nonlinear least-squares
regression in MATLAB, we solve for a best-fit permeability of
8.35×10−13 [ m2

s ]. Utilizing this permeability value in our model,
the actuation data compared to the theory curve for all PDMS
membrane chambers (small radius chamber: a = 100 µm, thick
membrane chamber: l0 = 26 µm, and reduced osmotic loading:
C0 = 3 M) are shown in Fig. S8. This fit parameter captures the
middle-time response and high-stretch response behavior of the
reference chamber, small radius chamber, thick membrane cham-
ber, and reduced osmotic loading chamber better than the lin-
ear fit at large membrane stretch values (later stage actuation).
However, it underestimates the initial rate of actuation for these
chambers.

7.3 Solving for Stretch Dependent Permeability

We solve for stretch-dependent permeability by isolating the mo-
bility term (and therefore permeability), using the following
equation:

L(Ṽ ) =
PwCw

RT
VmMW

ρ
=−

d V
V0

dt
l0V0

A0Π0

1
fA(Ṽ ) fl(Ṽ )

1(
1
V
V0

+
E fp(Ṽ )

Π0

)
(63)

To determine an instantaneous value of mobility L, an instanta-
neous value of the volumetric flow rate dV/V0

dt is necessary. We
determine a series of instantaneous volume flow rates, by create
overlapped time-bins within our data, and using a linear fit func-
tion within MATLAB to fit overlapping piece-wise functions to ac-
tuation rate data. The resulting slope at each piece-wise linear
fit is taken as the instantaneous flow rate dV/V0

dt at the mid-point
time of that binned region. An example of the resulting piece-
wise fits (dark blue line segments) plotted against the actuation
data (dark blue circles) for the reference chamber (a = 200 µm,
l0 = 20 µm, C0 = 3 M), is shown in Fig. S9.

7.4 Thickness-dependent permeability

As described in the main text, previous studies by Firpo et. al5

determined a critical length scale Lc at which the surface reac-
tions can become highly nonequilibrium and below which the per-
meability decreases with decreasing membrane thickness. How-
ever, membrane thickness in the deformed state is not uniform,
as shown in Fig. S2. To quantify the sensitivity of the thickness
dependence to these small thickness changes, we plot the high-
est and lowest Lc predictions from Fig. 6a, Lc = 10 µm and
Lc = 200 µm, but for a differential membrane thickness, l − l,
where l is ±1 µm. Between these differential values, we shade in
the regions on Fig. S10 to provide approximate sensitivity analy-
sis of the Firpo thickness-dependence to small thickness changes.
The results support our interpretation within the main text.

8 Thin Film Deformation

At high levels of membrane stretching, λ =
√

A/A0 ≥ 3.5, the
bulging membranes on the microactuators begin to exhibit color
gradients, with the most concentrated color appearing at the max-
imum deflection in the center of the membrane. Intriguingly,
color tends to fall within the blue/violet color spectrum (shown in
Fig. S11(a-b)) initially, increasing to warmer colors as the mem-
brane continues to stretch. We hypothesize that these colors ap-
pear as the thin film deforms to thicknesses approaching a length-
scale close to the wavelength of visible light. Order of magnitude
estimations of the film thickness in the region of maximum deflec-
tion support this hypothesis (This region has the smallest thick-
ness.) (Fig. S11c).

We obtain film thickness estimates from a combination of ex-
perimental observation, finite element calculation, and a few sim-
ple geometric relationships. The dimensionless membrane vol-
umes in Fig. S11 (a-b) correspond to Ṽ = 9 (a) and Ṽ = 10 (b).
We measure the experimental surface area A of these membranes
at each of the observed Ṽ and estimate the experimental average
thickness of these membranes (lexp:average) using the following re-
lationship, assuming incompressibility of the PDMS membrane,

laverage(Ṽ ) =
Vmembrane

A(Ṽ )
(64)

where Vmembrane is the initial cylindrical membrane volume,
defined by a radius of a = 200 µm and initial thickness of
l0 = 20 µm. The average thickness estimates using this method
range from 1.5-1.66 µm, as described in Table 2. In validation,
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Linear Elastic 
Regime Collapse

b)a)

Fig. S7 Linear elastic constant permeability fit. (a) The collapse of all experimental data in the linear elastic regime occurs, when plotted in
dimensionless time. (b) The respective best-fit volumetric chamber evolution model employing linear elastic membrane mechanics parameters plotted
in experimental time [h], fits each individual experimental chamber configuration, but only in the linear elastic regime ( V

V0
≤ 1.3).

Table 2 Thin Film Bulging Thickness

Ṽ experimental: laverage(Ṽ ) (µm) prediction: laverage(Ṽ ) (µm) estimated thickness at max. deflection (nm)
9 1.66 1.34 880
10 1.50 1.23 800

Fig. S8 Constant permeability fit for a hyperelastic membrane shown
against experimental actuation. A best fit water permeability Pw is found
using nonlinear least-squares regression for all actuation data and utilized
in theory to show predictive actuation behavior of a hyperelastic mem-
brane exhibiting constant Pw.

we check these measurements against the average thickness pre-
dicted using the constitutive model description of the nonlinear
bulge, specifically the inverse of function fl(Ṽ ). Both values are
in agreement as shown in Table 2 with estimates on the same or-
der of magnitude, further demonstrating the consistency of the
model in capturing the membrane behavior. Both of these meth-
ods (experimental measurement and predictive model) provide
average film thicknesses, however the color appearing in the film
is concentrated to specific regions, mainly the region at the max-
imum membrane deflection. This is due to the fact that greater

Fig. S9 Piece-wise fits to each small time-binned region of the V
V0

curve,
where the slope of each piece-wise linear-function corresponds to the
instantaneous volumetric flow rate dV/V0

dt of each region.

film stretching occurs at the maximum deflection as illustrated by
Fig. S11(c). The curves in this figure arise directly from the solu-
tions to the membrane deflection and thickness calculations. Due
to incompressibility, the transverse stretch ratio λr is the inverse
of the product of the longitudinal and latitudinal stretch ratios
(λξ , λφ ), and when multiplied by the initial membrane thickness
l0, the stretch dependent membrane thickness along the mem-
brane profile, l(ρ), is defined as

l(ρ) = λr(ρ)l0. (65)

The thickness of the membrane at the membrane’s center where
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(a) (b)

(c)

𝜌 = 1𝜌 = 0

Fig. S11 Thin films deforming on PDMS devices fabricated using the
(a-b) reference configuration. At these high levels of deformation [Ṽ = 9
(a), and Ṽ = 10 (b)] the bulging membranes begin to exhibit color at
the point of maximum deflection. As the membrane experiences greater
stretch the color evolves (a: violet color at maximum, b: orange color
at maximum). (c) The membrane thickness distribution is non-uniform
shown by the solid curves (Ṽ = 9: blue, Ṽ = 10: orange), with the
thinnest region, occurring at the membrane’s center where maximum
deflection occurs. This is compared to the average membrane thickness
in the entire membrane (dashed line), where the maximum stretch is 34%
less than the average stretch.

average thickness, l [μm]

Lc = 10 μm 

Lc =  200 μm 

𝑙0 − 𝑥
𝑥 = −1 [μm] 

𝑥 = 0 [μm] 

𝑥 = 1 [μm] 

Fig. S10 Deformation-mediated permeability Pw of PDMS where in-
stantaneous permeability (black circles), averaged from all four PDMS
chamber conditions, as a function of average biaxial membrane stretch λ

(lower x-axis) and corresponding stretch dependent Pw(λ ) fit teal. This
permeability-fit is compared to thickness-dependent (l, upper x-axis) per-
meability model. Shaded regions (light red) bound curves describing Lc
at values of (Lc= 10, 200 µm) with ± 1 µm thickness bounds.

the maximum deflection occurs is at a value of ρ = 0. The average
membrane thickness is defined by the average thickness 1/⟨l0/l⟩
determined from fl(Ṽ ), multiplied by the initial membrane thick-
ness l0

laverage = l0
1

⟨l0/l⟩
. (66)

These average thickness values are plotted in Fig. S11c with
dashed lines. The membrane thickness at the center point pre-
dict the minimum film thickness (as opposed to using the aver-
age film thickness). For both Ṽ = 9 and Ṽ = 10, the minimum
membrane thickness (which occurs at the maximum deflection)
is approximately 34% less than the average membrane thickness.
Therefore, the membrane thickness at the maximum deflection
(the region where we see concentrated color) for the Ṽ = 9 and
Ṽ = 10 actuated bulges are approximately 880 nm and 800 nm,
respectively. Both values have an order of magnitude similar to
that of the wavelength of visible light (400-700 nm).
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