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A Model Development

A.1 Surface representation
In a polar coordinate the membrane can be parameterized by the arclength s and the rotation angle 0 as
r(r,z,0) = r(s,0). (SD)

The surface tangents are given by e; = 7 , and 7 4. The surface metric a;; = e; - €; becomes

1 0
aij|:0 7"2:|' (SZ)
The curvature tensor b;; = e; ; - n simplifies to
¥ 0
bij = { 0 rsiny |- (83)
The mean curvatures is given by
1
H= 5a“ﬁ bag,

where, a®” is the inverse of the metric tension. The principal curvature can be extracted from the curvature tensor as

cc = bapC¢P,
and
¢ = bapn®p’.

where, ¢ and p are surface tangents in two principal directions, The deviatoric curvature becomes
1
D = 5 (CC — Cﬂ)'

A.2 Protein Orientation

The orientation of a protein [1]] on the surface can be represented by orientation unit vector ¢ (Figure which
essentially indicates tangent to the curve on which protein orients [2]. Thus we can constitute another unit vector p,
such that: g =n x (.
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Figure S1: Orientation vectors of BAR-domain proteins

A.3 Balance relations

The force balance equation is dictated by

T, +pn=0, (S4)
where p is normal pressure on the membrane and T is traction on the membrane and given by,
T = N°%az + S°n. (S5)
Here, IN is the in-plane component of the stress and is given by
NP =Py pfpre and S =-MY, (S6)
where o and MP* are obtained from the following constitutive relations [3|]
=0 (ai; - a(ZJ and M7= G (aifﬁ * azfa) ’ 67

with F' = W/p as the energy mass density of the membrane. Combining these we get the balance equations in tangent
and normal direction
NP — 5°b5 =0, 8%+ NPgq +p=0 (S8)
The normal force balance relation in Equation @Z becomes [2]
1 1
§[W,D(Caﬁﬁ — 117 pa + §W,D(CGCB - Maﬂﬂ)bavbg +
I 1 (89)
1
A (QW,H> + (W.k)ipa (2Ha?* —0°%) + W 5 (2H? — K) + 2H(KW ) — W) — 2H)\ = p,

where the marked terms are simplified in the next section for an axisymmetric geometry. To construct a force boundary
condition we use the expression of the normal traction force as given by [4]

Fu=(Wi) — 5 (W), — (Wi) 5 5*va

!
. 2 , (S10)
+5(Wp), — (WA M) jva — (WpA* M usra ),

where 7 is the unit tangent to the curve at boundary, v is the outward normal to the same curve at the boundary, and
can be constructed from local surface normal n as v = 7 x n.

B Simplification in axisymmetry

B.1 Governing equations

We have orthogonal surface tangent vectors as given by

a, =ey, as=rey. (S11)
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We get the expression of orientation unit vector in terms of orthogonal basis vectors as given below
1
Cz—ee):—;az, u=ai. (S12)

We first find the expressions of the direct products of orientation vectors used in Equation (S9) below

¢o¢f = (8 1/()7«2)7 (s13)

pen? = (é 8) : (S14)

In the limit of axisymmetry, the components of Christoffel symbols denoted by

and

1
‘blc = iaad [8aabd + 8badc — 8dabc] .

The components of the Christoffel are given below with 1 and 2 denoting the arclength (s) and azimuthal direction,
respectively
I =0, T3 =0, T =—rcosy,

I3, =T% =<% Tl =0,and I? =0. (S15)
We first simplify the term I in Equation (S9) below
1= 5 W (¢ =),
= (W.n¢*¢")pa — % [Wo (¢*¢7 + p*i”)] 5., (S16)
= (W.0¢*¢") 80 — %(W,Daaﬂ);ﬂa-

Note that we recover the surface metric from the addition of the direct products of the orientation vectors as given
below

(¢*¢P + oy = < (1) (1)/r2 ) = a*P. (S17)

From Equation [ST6| we can further write term I as

L= (W.p¢"¢")ipa — %A(Wm

1 (S18)
= 7753 - iA(WyD%
where
0’ = (Wn¢*¢?),,
' (S19)
= (W,p¢*¢?) , +WpTa,(¢7 + W pl'y, (¢
The components of n” are estimated below in two principal directions
Nt =040+ W pTh,¢3¢2 = —@W,D, (S20)
and
7 =0+0+0=0. (S21)
The divergent 77;% reduces to
1
77;55 = %(\/&Uﬁ)ﬁ
1
= ') (522
_ (cosyW )
T
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Substituting the expression of 17% in Equation we get term I simplified as

1 sYW p)’
I:—fA(Wp)—M. (S23)
2 T
Next, we simplify term II below
1 (o3 [e3%
II= §WD (C CB — K :uﬁ) ba'ybg
1
= §WD {C2C2bzzb§ - Mlﬂlbub%}
1 in’
=-Wp {511121/) - 1//2}
2 r (S24)
1 sin sin
=2W,D< ¢+w,>< Y w,>
1
= §W p2H 2D
=2HDW p.
Finally, using the simplifications of term I (Equation (S23))) and term II (Equation (S24)), the shape equation becomes
L/
p=—+Wn (2H? = K) —2H (W + A —WpD), (S25)
where L relates to the expression of the traction as shown in Equation (S10), given by
1 cos
L/r= 3 [(Wy)' — (Wp)'] - TwW,D = —F,. (S26)

The above relation gives a natural boundary condition for L at the center and the boundary. At the center it directly
correlates with the value of pulling force as

pr = lim 207 F, = —27L(0). (S27)

Note than the derivation of shape equation was presented in [2]] where the last term was missing in the definition of
L/r in Equation (S26)) and which led to an incorrect residual term M in the shape equation. Please note that
an artificial pulling force was introduced for the boundary condition of L = 0 at the center of the membrane with the
incomplete expression as presented in Walani et al. [2].

B.2 Area parameterization

The governing equation is solved on a patch of membrane with fixed surface area, where the coat area of protein is
prescribed. The arclength parametrization poses some difficulty since total arclength varies depending on the equilib-
rium shape of the membrane. Therefore, we did a coordinate transformation of arclength to a local area a as given by

0 0
— =2nr—. S28
Js o da (528)
Note that in the differential form local area relates as
da = 27rds (529)
The tangential force balance relation in Equation 7 transforms to
O\ 0Cy 9Dy
— =2k(H — Cy)—— + 2kq(D — Dg)——. S30
da d ) da + 264 o) da (530)
The normal force balance relation in Equation 8 becomes
oL
p=2mo-+ 2k(H — Cp) (2H? — K) — 2H (W + XA — 2k4D(D — Dy)) (S31)
where,
L 0
o wra{n(H —Cy) — ka(D — DO)} 9k (D — D)<Y (S32)
T a T

4
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B.3 Non-dimensionalization

In this section we use (- ) to represent the dimensionless quantities. We used a scale of curvature 1/ Ry, where Ry
is the equivalent lengthscale in the domain. The dimensionless mean, deviatoric and Gaussian curvature becomes

H= RoH, D= RyD, and K = ROK The same scale for curvature is used to nondimensionalize spontaneous mean
and deviatoric curvatures and they become CO = RoCy and DO = RODQ. The area is dimensionalized with scale
Ag = 2 R2. The scale for membrane tension is taken as x/R2, therefore A\ = R3\/k. The dimensionless form of L

becomes L = RyL /.
The tangential force balance relation in Equation (S30) reads as

N 0Cy 0Dy
2(H — C, 2kq(D — D S33
9 2( 0) o Ra( 0) = BT (833)
where g = “¢ represents the dimensionless deviatoric curvature. The normal force balance relation in Equa-
tion (S31)) simplifies to
oL 7 A 72 T AN L= (D )2
p=22 4 2(H — Cy) (2H - K) —2H{ (H — Cy)? + izq(D — Dy)
da
(S34)
X 27aD(D - DO)},
with ~
L 0
kel _fZ(T{(HCO) %d(DDO)} — 9%a(D — D) %Y. (S35)
7 a
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Figure S2: Forward and backward transition to demonstrate snapthrough instability. (a) Transition of tube length in
the direction of increasing and decreasing membrane tension for Dy = 0.017 nm~! and x = 168 pN - nm and two
different values of coat area of proteins. (b) Transition of bending energy in the direction of increasing and decreasing
membrane tension for Dy = 0.017 nm ™! and x = 168 pN - nm and two different values of coat area of proteins.
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