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A Model Development

A.1 Surface representation

In a polar coordinate the membrane can be parameterized by the arclength s and the rotation angle θ as

r(r, z, θ) = r(s, θ). (S1)

The surface tangents are given by es = r,s and r,θ. The surface metric aij = ei · ej becomes

aij =

[
1 0
0 r2

]
. (S2)

The curvature tensor bij = ei,j · n simplifies to

bij =

[
ψs 0
0 r sinψ

]
. (S3)

The mean curvatures is given by

H =
1

2
aαβbαβ ,

where, aαβ is the inverse of the metric tension. The principal curvature can be extracted from the curvature tensor as

cζ = bαβζ
αζβ ,

and
cµ = bαβµ

αµβ .

where, ζ and µ are surface tangents in two principal directions, The deviatoric curvature becomes

D =
1

2
(cζ − cµ).

A.2 Protein Orientation

The orientation of a protein [1] on the surface can be represented by orientation unit vector ζ (Figure S1) which
essentially indicates tangent to the curve on which protein orients [2]. Thus we can constitute another unit vector µ,
such that: µ = n× ζ.
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Figure S1: Orientation vectors of BAR-domain proteins

A.3 Balance relations

The force balance equation is dictated by
T α

;α + pn = 0 , (S4)
where p is normal pressure on the membrane and T is traction on the membrane and given by,

T α = Nβαaβ + Sαn. (S5)

Here, N is the in-plane component of the stress and is given by

Nβα = ζβα + bβµM
µα and Sα = −Mαβ

;β , (S6)

where σβα and Mβα are obtained from the following constitutive relations [3]

σβα = ρ

(
∂F

∂aαβ
+

∂F

∂aβα

)
and Mβα =

ρ

2

(
∂F

∂bαβ
+

∂F

∂bβα

)
, (S7)

with F =W/ρ as the energy mass density of the membrane. Combining these we get the balance equations in tangent
and normal direction

Nβα
;α − Sαbβα = 0, Sα;α +Nβαbβα + p = 0 (S8)

The normal force balance relation in Equation S8ii becomes [2]

1

2
[W,D(ζ

αζβ − µαµβ)];βα︸ ︷︷ ︸
I

+
1

2
W,D(ζ

αζβ − µαµβ)bαγb
γ
β︸ ︷︷ ︸

II

+

∆

(
1

2
W,H

)
+ (W,K);βα

(
2Haβα − bβα

)
+W,H(2H2 −K) + 2H(KW,K −W )− 2Hλ = p,

(S9)

where the marked terms are simplified in the next section for an axisymmetric geometry. To construct a force boundary
condition we use the expression of the normal traction force as given by [4]

Fn =(τWK)
′ − 1

2
(WH),ν − (WK),β b̃

αβvα

+
1

2
(WD),ν −

(
WDλ

αλβ
)
;β
vα −

(
WDλ

αλβvβτα
)′
,

(S10)

where τ is the unit tangent to the curve at boundary, ν is the outward normal to the same curve at the boundary, and
can be constructed from local surface normal n as ν = τ × n.

B Simplification in axisymmetry

B.1 Governing equations

We have orthogonal surface tangent vectors as given by

a1 = es, a2 = reθ. (S11)
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We get the expression of orientation unit vector in terms of orthogonal basis vectors as given below

ζ = −eθ = −1

r
a2, µ = a1. (S12)

We first find the expressions of the direct products of orientation vectors used in Equation (S9) below

ζαζβ =

(
0 0
0 1/r2

)
, (S13)

and

µαµβ =

(
1 0
0 0

)
. (S14)

In the limit of axisymmetry, the components of Christoffel symbols denoted by

Γabc =
1

2
aad [∂aabd + ∂badc − ∂dabc] .

The components of the Christoffel are given below with 1 and 2 denoting the arclength (s) and azimuthal direction,
respectively

Γ1
11 = 0, Γ2

22 = 0, Γ1
22 = −r cosψ,

Γ2
12 = Γ2

21 = cosψ
r , Γ1

21 = 0, and Γ2
11 = 0.

(S15)

We first simplify the term I in Equation (S9) below

I =
1

2

[
WD

(
ζαζβ − µαµβ

)]
;βα

= (W,Dζ
αζβ);βα − 1

2

[
WD

(
ζαζβ + µαµβ

)]
;βα

= (W,Dζ
αζβ);βα − 1

2
(W,Da

αβ);βα.

(S16)

Note that we recover the surface metric from the addition of the direct products of the orientation vectors as given
below (

ζαζβ + µαµβ
)
=

(
1 0
0 1/r2

)
= aαβ . (S17)

From Equation S16 we can further write term I as

I = (W,Dζ
αζβ);βα − 1

2
∆(W,D)

= ηβ;β − 1

2
∆(W,D),

(S18)

where
ηβ =

(
WDζ

αζβ
)
;α

=
(
W,Dζ

αζβ
)
,α

+W,DΓ
α
αγζ

γζβ +W,DΓ
β
αγζ

αζγ .
(S19)

The components of ηβ are estimated below in two principal directions

η1 = 0 + 0 +W,DΓ
1
22ζ

2ζ2 = −cosψ

r
W,D, (S20)

and
η2 = 0 + 0 + 0 = 0. (S21)

The divergent ηβ;β reduces to

ηβ;β =
1√
a
(
√
aηβ),β

=
1

r
(rη1),1

= − (cosψW,D)
′

r
.

(S22)
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Substituting the expression of ηβ;β in Equation S16 we get term I simplified as

I = −1

2
∆(W,D)−

(cosψW,D)
′

r
. (S23)

Next, we simplify term II below

II =
1

2
WD

(
ζαζβ − µαµβ

)
bαγb

γ
β

=
1

2
WD

{
ζ2ζ2b22b

2
2 − µ1µ1b11b

1
1

}
=

1

2
W,D

{
sin2 ψ

r2
− ψ′2

}
=

1

2
W,D

(
sinψ

r
+ ψ′

)(
sinψ

r
− ψ′

)
=

1

2
W,D 2H 2D

= 2HDW,D.

(S24)

Finally, using the simplifications of term I (Equation (S23)) and term II (Equation (S24)), the shape equation becomes

p =
L′

r
+WH

(
2H2 −K

)
− 2H (W + λ−WDD) , (S25)

where L relates to the expression of the traction as shown in Equation (S10), given by

L/r =
1

2

[
(WH)

′ − (WD)
′]− cosψ

r
W,D = −Fn. (S26)

The above relation gives a natural boundary condition for L at the center and the boundary. At the center it directly
correlates with the value of pulling force as

pf = lim
r−→0

2πrFn = −2πL(0). (S27)

Note than the derivation of shape equation was presented in [2] where the last term was missing in the definition of
L/r in Equation (S26) and which led to an incorrect residual term (WD)′ cosψ

r in the shape equation. Please note that
an artificial pulling force was introduced for the boundary condition of L = 0 at the center of the membrane with the
incomplete expression as presented in Walani et al. [2].

B.2 Area parameterization

The governing equation is solved on a patch of membrane with fixed surface area, where the coat area of protein is
prescribed. The arclength parametrization poses some difficulty since total arclength varies depending on the equilib-
rium shape of the membrane. Therefore, we did a coordinate transformation of arclength to a local area a as given by

∂

∂s
= 2πr

∂

∂a
. (S28)

Note that in the differential form local area relates as

da = 2πrds (S29)

The tangential force balance relation in Equation 7 transforms to

∂λ

∂a
= 2κ(H − C0)

∂C0

∂a
+ 2κd(D −D0)

∂D0

∂a
. (S30)

The normal force balance relation in Equation 8 becomes

p =2π
∂L

∂a
+ 2κ(H − C0)

(
2H2 −K

)
− 2H (W + λ− 2κdD(D −D0)) (S31)

where,
L

r
= πr

∂

∂a

{
κ(H − C0)− κd(D −D0)

}
− 2κD(D −D0)

cosψ

r
. (S32)
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B.3 Non-dimensionalization

In this section we use (̃·) to represent the dimensionless quantities. We used a scale of curvature 1/R0, where R0

is the equivalent lengthscale in the domain. The dimensionless mean, deviatoric and Gaussian curvature becomes
H̃ = R0H , D̃ = R0D, and K̃ = R2

0K. The same scale for curvature is used to nondimensionalize spontaneous mean
and deviatoric curvatures and they become C̃0 = R0C0 and D̃0 = R0D0. The area is dimensionalized with scale
A0 = 2πR2

0. The scale for membrane tension is taken as κ/R2
0, therefore λ̃ = R2

0λ/κ. The dimensionless form of L
becomes L̃ = R0L/κ.
The tangential force balance relation in Equation (S30) reads as

∂λ̃

∂ã
= 2(H̃ − C̃0)

∂C̃0

∂ã
+ 2κ̃d(D̃ − D̃0)

∂D̃0

∂ã
, (S33)

where κ̃d = κd

κ represents the dimensionless deviatoric curvature. The normal force balance relation in Equa-
tion (S31) simplifies to

p̃ =
∂L̃

∂ã
+ 2(H̃ − C̃0)

(
2H̃2 − K̃

)
−2H̃

{
(H̃ − C̃0)

2 + κ̃d(D̃ − D̃0)
2

+ λ̃− 2κ̃dD̃(D̃ − D̃0)

}
,

(S34)

with
L̃

r̃
= r̃2

∂

∂ã

{
(H − C0)− κ̃d(D −D0)

}
− 2κ̃d(D −D0)

cosψ

r
. (S35)

C Supplementary Figures

Figure S2: Forward and backward transition to demonstrate snapthrough instability. (a) Transition of tube length in
the direction of increasing and decreasing membrane tension for D0 = 0.017 nm−1 and κ = 168 pN · nm and two
different values of coat area of proteins. (b) Transition of bending energy in the direction of increasing and decreasing
membrane tension for D0 = 0.017 nm−1 and κ = 168 pN · nm and two different values of coat area of proteins.
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