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Definition of indicators 
 
We have two indicators of electron density quality to be minimized in the employed algorithm. 
 
The first senses the flatness of the electron density distribution ρ(r) as a function of position r = (x, y, z) 
defined as 
 
 Iρ = max{ρ(r) } – min{ρ(r) }. 
 
The second reflects the implausibility of isolated maximum and minimum of ρ(r). The index IK is defined 
as 
 

 
 
where the integration is taken over the region where ρ(r) is strictly convex in a unit cell. The matrix H is a 
Hessian of ρ(r) defined by 
 

 
 
where subscripts indicate partial derivatives by them.  
See refs. s1 and s2 for details of the algorithm. 
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Extension of the phase retrieval method for powder diffractions 
 
In the powder diffraction data of cubic crystals, diffraction peaks from the planes with the same |h|2 (= h2 + 
k2 + l2) overlap perfectly. The observed peak intensity after appropriate corrections can be written as follows: 
 

 , 
where, |h|2 = |hi|2, F(h) is a structure factor, Hi is a set of indices with equivalent structure factor amplitudes, 
and n is the number of the sets. For example, for the Laue class , |h|2 = 10 yields n = 2, H1 = {310}, and 
H2 = {130} (see Table S1). |F(hi)| is the same as long as hi Î Hi. The basic algorithm of the phase retrieval is 
almost the same as ref. s2. Since the previous algorithm is for single crystal diffraction data, we modified it 
for powder data. Suppose that the structure factor G(h) is obtained in step 3 of the previous algorithm. For 
powder diffraction data, the equation for the new structure factor in step 4 is modified as follows: 
 

  

where 

, 
 

and Hobs is the set of all h combinations for which the structure factor was observed. The [] and {} parts in 
the equation correspond to the amplitude and phase parts of the structure factor, respectively. This constraint 
is also applied after the initial generation of the random structure factors. Other than this, the algorithm is the 
same as in the previous paper.  
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Input data for analyses 
 

 
 
Figure S1. Diffraction patterns of BABH(14) (424.1 K) and BABH(15) (418.3 K), the row data for [s3]. 
 
 
Table S1. Observed X-ray diffraction intensities [s3]. The Laue class is . 

|h|2 
Iobs 

na overlapping h sets (multiplicity) 
BABH(14) BABH(15) 

10 0.747 0.698 2 {310} (12) {130} (12)   

12 1.344 1.290 1 {222} (8)    

14 27.728 25.024 2 {321} (24) {231} (24)   

16 6.000 6.000 1 {400} (6)    

18 1.231 0.952 2 {411} (24) {330} (12)   

20 1.638 1.433 2 {420} (12) {240}(12)   

22 - 0.106 1 {332} (24)    

24 0.350 0.198 1 {422} (24)    

26 0.209 0.217 4 {431} (24) {341} (24) {510} (12) {150} (12) 

30 - 0.091 2 {521} (24) {251} (24)   
aThe number of overlapping h sets.  
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Summary of analyses 
 
Starting from initial electron density distributions computed with 100 guess sets of random phases of 
experimental structure factors, the iterative modifications while keeping structure factor norms towards a 
smaller value of the indicator, Iρ, under the algorithm converged to densities with locally minimum indicators. 
In the calculations, the parameters were set to vf = 0.35 (volume fraction of positive electron density region), 
kt = 1.3~0.8 (flipping parameter, period 41), kt = 1.0~0.0 (threshold parameter, period 43), and the number of 
iterations was 7000. Figures S2a and S3a show the indicator combinations for BABH(14) and BABH(15), 
respectively. The electron density distributions of 20 and 14 trials encircled by a red circle for each are 
identical. Others (51 and 65 attempts) at the lower-left corner [Iρ < 26 and 24 for BABH(14) and BABH(15), 
respectively] are also identical with slight distortion to the best results. The obtained electron densities (and 
phases of structure factors) were translated to match the conventional origin of the determined space group 
I213. The final structure factors are shown in Table 1 of the main text. The lower panels (b and c) of Figs. S1 
and S2 indicate the norms of the structure factors and phases calculated from the best electron densities as a 
function of h2 + k2 + l2. The Laue class  allows different norms of (hkl) and (khl) while reserving the 
identity for their cyclic permutations. The positive/negative symmetry of the phase reflects the Friedel law. 
Figures S4 and S5 show the electron density distribution of BABH(15) and a close-up of that of BABH(14), 
respectively. Analyses of the electron density indicated that local maxima well represent the skeletal graphs. 
Fractional coordinates of the vertices (up to two digits) are (0.17, 0.17, 0.17), (0.34, 0.34, 0.34), (0.65, 0.57, 
0.37), and (0.62, 0.34, 0.47). The first and last halves are on a body diagonal and at general positions, 
respectively. The network geometry is compared with the ideal noh net in Fig. S6. Table S2 summarizes some 
quantities derived from the aggregation model. Figure S7 displays alternative representations of the 
connectivity (line graph) of the electron density distribution. 
 

 
 

Figure S2. Summary of the analysis for BABH(14). a) Distribution of indicator combinations for BABH(14). 
The chosen solution is marked by a red circle; b) Distribution of |F|; c) Distribution of the phase divided by 
π. 
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Figure S3. Summary of the analysis for BABH(15). a) Distribution of indicator combinations for BABH(15). 
The chosen solution is marked by a red circle; b) Distribution of |F|; c) Distribution of the phase divided by 
π. 
 
 

            
 
Figure S4. Electron density distribution  Figure S5. Close-up of electron density distribution of 
of BABH(15).     BABH(14) viewed along the [111] (threefold axis). The 
 distortion of the six-membered circuit is evident.  
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Figure S6. Comparison of the (a) experimentally deduced and (b) ideal noh nets. Colors in a) distinguish the 
vertices on a threefold axis and at a crystallographically general position. Distances between selected vertices 
are shown in a) in unit of the cell constant, a, whereas all distances in the ideal noh net (with completely flat 
junctions) are equal. In reality, there is another net related by a half translation along the body diagonal in (a). 
 
 
 
Table S2. Phase sequence against the temperature of BABH(14) and BABH(15) and some quantities derived 
from the structural analysis for chiral I213 and achiral /Gyroid phases  
 
Phase sequence 
 
BABH(14): crystal – 402.6 K –> chiral cubic phase – 432.1 K –> isotropic liquid 
BABH(15): crystal – 402.6 K –> chiral cubic phase – ca. 430 K –>  

Gyroid ( ) phase – 432.2 K –> isotropic liquid 
 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
  BABH(14)  BABH(15) 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 phase chiral phase chiral phase  achiral phase 
 a / nm 12.20 (424.1 K) 12.56 (418.3 K)  7.98 (429.5 K) 
 number of molecules in a cell† 1600 1700  440 
 space group I213 (No. 199) I213 (No. 199)   (No. 230) 
 number of junctions in a cell 64 64  16 
 
 number of molecules per junction 25 27  28 
 linear distance between 2.53 nm, 2.81 nm 2.52 nm, 2.98 nm  2.82 nm 
 bonding junctions‡ 2.29 nm, 3.08 nm 2.38 nm, 3.17 nm  2.82 nm 
 linear distance between 3.72 nm 3.92 nm  3.46 nm 
 non-bonding junctions¶ 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
†Assuming the bulk density of 1.00 g cm-3. 
‡ For the chiral phase, the upper line contains ones including a vertex on a threefold axis,  
whereas the lower line ones on the six-membered ring.  
No assumption is necessary for the  phase (√2a/4) because of the symmetry. 

¶Distance between nearest junctions on a body diagonal of the cell.  

0.19a
0.25a

0.23a

0.21a

0.217a 

a) b)

0.23a

0.21a
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Figure S7. Idealized illustration of structures of a) chiral I213 and b) achiral /Gyroid phases in terms of 
planar triangles, which are cores of aggregated molecular cores.  
 
 
Discussion reaching to the aggregation model 
 

Based on the entropic and other evidence of molten states of alkyl chains in most liquid crystals [s4-s6], 
our thermodynamic [s7] and structural [s8] studies indicated that a fundamental aggregation mode of 
(layered) smectic liquid crystals of chain-core type mesogenic molecules is the alternating stack of core and 
chain layers. Further, our experiments [s9,10] and the survey of existing literature [s11] revealed that many 
orthogonal smectics (smectic A, B, and E phases) exhibit one of two dependencies of their layer spacings, 
0.19 nm (CH2)-1 and 0.14 nm (CH2)-1, where the CH2 means that in an alkyl chain in a molecule. Since both 
magnitudes are larger than expected for a single highly-disordered alkyl chain, the smectic aggregation must 
contain layers to which alkyl groups from both sides contribute [s9-s11]. The former dependence is 
reasonable for the increment of chains normal to the layer on average. The smaller dependence of the latter 
indicates the inclination of the alkyl chain from the layer normal. Since alkyl chains from both sides doubly 
contribute to a single alkyl layer, an increment by a methylene group are (0.19/2) nm and (0.14/2) nm for 
normal and inclined alkyl chains, respectively. 

The Gyroid phase consists of not flat but continuously curved layers (known as triply periodic minimal 
surface), resulting in continuous variation of molecular orientation. However, on the body-diagonals of unit 
cells, molecules must align along those because of the symmetry. Therefore, the same analysis as the 
orthogonal smectics applies. The previous paper [s12] studied the two Gyroid phases separated by the present 
chiral cubic phase in the phase diagram against the chain length (n). Their chain-length dependences of the 
cell constants are a / nm = 3.91 + 0.31n and a / nm = 4.72 + 0.22n for short- and long-chain members, 
respectively [s13]. Considering four molecules along the body-diagonal (√3a), we revealed the averaged 
molecular aggregation mode as the inclined chain state for short-chain members by 0.31 nm (CH2)-1 ´ √3/4 
≈ 0.134 nm (CH2)-1. Since the experimental magnitude of 0.22 nm (CH2)-1 ´ √3/4 ≈ 0.095 nm (CH2)-1 for the 
long-chain members just fits (0.19/2) nm (CH2)-1, we concluded that the chain is parallel to a body-diagonal 
with full interdigitation. 

The molecules on the body diagonals of the present structural solution align parallel to those by 
symmetry. A body-diagonal contains four junctions with parallel molecules and vacant centers of two six-
membered rings. Assuming that the parallel molecules are responsible for the chain-length dependence of 
the cell constant, a / nm = 6.91 + 0.38n [s13], we have 0.38 nm (CH2)-1 ´ √3/4 ≈ 0.165 nm (CH2)-1, which is 
just the sum [(0.19/2) nm (CH2)-1 + (0.14/2) nm (CH2)-1]. Alkyl chains at two ends of a molecular core are in 
different environments; one between the three-way junctions and the other directed to the six-membered ring. 
They would differently contribute to the cell size. Considering their locations, we assign the straight 
conformation between the two junctions and the inclined one to the other. 

a)
b)

b)
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