Aggregation Structure of Chiral Cubic Liquid Crystals

Revealed by X-ray Diffraction Utilizing a New Algorithm

Toshihiko Oka, ${ }^{\dagger}$ Yasuhisa Yamamura, ${ }^{\ddagger}$ Shoichi Kutsumizu, ${ }^{\mathbb{J}}$ and Kazuya Saito ${ }^{*}, \ddagger$
${ }^{\dagger}$ Department of Physics, Faculty of Science, and Nanomaterials Research Division, Research
Institute of Electronics, Shizuoka University, Shizuoka 422-8529, JAPAN
*Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, JAPAN
'Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, JAPAN

- Definition of indicators
- Extension of the phase retrieval method for powder diffractions
- Input data for analyses

Figure S1. Uncorrected diffraction patterns of $\mathrm{BABH}(14)$ and $\mathrm{BABH}(15)$
Table S1. Observed X-ray diffraction intensities

- Summary of analyses

Figure S2. Summary of the analysis for $\mathrm{BABH}(14)$
Figure S3. Summary of the analysis for $\operatorname{BABH}(15)$
Figure S4. Electron density distribution of $\mathrm{BABH}(15)$
Figure S5. Close-up of electron density distribution of $\mathrm{BABH}(14)$
showing a distorted six-membered circuit
Figure S6. Comparison of experimentally deduced and ideal noh nets
Figure S7. Illustration of the chiral cubic and achiral (Gyroid) phases in terms of triangles Table S2. Phase sequence and some geometric quantities of $\mathrm{BABH}(14)$ and $\mathrm{BABH}(15)$

- Discussion reaching to the aggregation model.

Definition of indicators

We have two indicators of electron density quality to be minimized in the employed algorithm.
The first senses the flatness of the electron density distribution $\rho(\boldsymbol{r})$ as a function of position $\boldsymbol{r}=(x, y, z)$ defined as

$$
I_{\rho}=\max \{\rho(\boldsymbol{r})\}-\min \{\rho(\boldsymbol{r})\} .
$$

The second reflects the implausibility of isolated maximum and minimum of $\rho(r)$. The index I_{K} is defined as

$$
I_{K}=\int_{\mathrm{C}}|\operatorname{det} H(\boldsymbol{r})| d \boldsymbol{r}
$$

where the integration is taken over the region where $\rho(\boldsymbol{r})$ is strictly convex in a unit cell. The matrix H is a Hessian of $\rho(\boldsymbol{r})$ defined by

$$
H=\left(\begin{array}{ccc}
\rho_{x x} & \rho_{x y} & \rho_{x z} \\
\rho_{y x} & \rho_{y y} & \rho_{y z} \\
\rho_{z x} & \rho_{z y} & \rho_{z z}
\end{array}\right)
$$

where subscripts indicate partial derivatives by them.
See refs. s1 and s2 for details of the algorithm.

Extension of the phase retrieval method for powder diffractions

In the powder diffraction data of cubic crystals, diffraction peaks from the planes with the same $|\boldsymbol{h}|^{2}\left(=h^{2}+\right.$ $k^{2}+l^{2}$) overlap perfectly. The observed peak intensity after appropriate corrections can be written as follows:

$$
I_{\text {obs }}\left(|\boldsymbol{h}|^{2}\right)=\sum_{i=1}^{n}\left[\sum_{\boldsymbol{h}_{i} \in H_{i}}\left|F\left(\boldsymbol{h}_{i}\right)\right|^{2}\right]
$$

where, $|\boldsymbol{h}|^{2}=|\boldsymbol{h}|^{2}, F(\boldsymbol{h})$ is a structure factor, H_{i} is a set of indices with equivalent structure factor amplitudes, and n is the number of the sets. For example, for the Laue class $m \overline{3},|\boldsymbol{h}|^{2}=10$ yields $n=2, H_{1}=\{310\}$, and $H_{2}=\{130\}$ (see Table S 1). $\left|F\left(\boldsymbol{h}_{i}\right)\right|$ is the same as long as $\boldsymbol{h}_{i} \in H_{i}$. The basic algorithm of the phase retrieval is almost the same as ref. s2. Since the previous algorithm is for single crystal diffraction data, we modified it for powder data. Suppose that the structure factor $G(\boldsymbol{h})$ is obtained in step 3 of the previous algorithm. For powder diffraction data, the equation for the new structure factor in step 4 is modified as follows:

$$
F\left(\boldsymbol{h}_{1}\right)= \begin{cases}{\left[\left(\frac{I_{\mathrm{obs}}\left(|\boldsymbol{h}|^{2}\right)}{\sum_{\boldsymbol{h}_{1} \in H_{1}} \overline{\left|G\left(\boldsymbol{h}_{1}\right)\right|^{2}}+\sum_{\boldsymbol{h}_{2} \in H_{2}} \overline{\left|G\left(\boldsymbol{h}_{2}\right)\right|^{2}}}\right)^{\frac{1}{2}} \overline{\left|G\left(\boldsymbol{h}_{1}\right)\right|}\right]\left\{\frac{G\left(\boldsymbol{h}_{1}\right)}{\left|G\left(\boldsymbol{h}_{1}\right)\right|}\right\}} & \boldsymbol{h}_{1} \in H_{\mathrm{obs}} \\ 0 & \boldsymbol{h}_{1} \notin H_{\mathrm{obs}}\end{cases}
$$

where

$$
\overline{\left|G\left(\boldsymbol{h}_{1}\right)\right|}=\sum_{\boldsymbol{h}_{1} \in H_{1}}\left|G\left(\boldsymbol{h}_{1}\right)\right| / \sum_{\boldsymbol{h}_{1} \in H_{1}} 1
$$

and H_{obs} is the set of all \boldsymbol{h} combinations for which the structure factor was observed. The [] and $\}$ parts in the equation correspond to the amplitude and phase parts of the structure factor, respectively. This constraint is also applied after the initial generation of the random structure factors. Other than this, the algorithm is the same as in the previous paper.

Input data for analyses

Figure S1. Diffraction patterns of $\mathrm{BABH}(14)(424.1 \mathrm{~K})$ and $\mathrm{BABH}(15)(418.3 \mathrm{~K})$, the row data for [s3].

Table S1. Observed X-ray diffraction intensities [s3]. The Laue class is $m \overline{3}$.

$\|\boldsymbol{h}\|^{2}$	$I_{\text {obs }}$			overlapping \boldsymbol{h} sets (multiplicity)		
	BABH(14)	BABH(15)	n^{a}			
10	0.747	0.698	2	$\{310\}(12)$	$\{130\}(12)$	
12	1.344	1.290	1	$\{222\}(8)$		
14	27.728	25.024	2	$\{321\}(24)$	$\{231\}(24)$	
16	6.000	6.000	1	$\{400\}(6)$		
18	1.231	0.952	2	$\{411\}(24)$	$\{330\}(12)$	
20	1.638	1.433	2	$\{420\}(12)$	$\{240\}(12)$	
22	-	0.106	1	$\{332\}(24)$		
24	0.350	0.198	1	$\{422\}(24)$		
26	0.209	0.217	4	$\{431\}(24)$	$\{341\}(24)$	$\{510\}(12)$
30	-	0.091	2	$\{521\}(24)$	$\{251\}(24)$	

${ }^{\text {a }}$ The number of overlapping \boldsymbol{h} sets.

Summary of analyses

Starting from initial electron density distributions computed with 100 guess sets of random phases of experimental structure factors, the iterative modifications while keeping structure factor norms towards a smaller value of the indicator, I_{ρ}, under the algorithm converged to densities with locally minimum indicators. In the calculations, the parameters were set to $v_{\mathrm{f}}=0.35$ (volume fraction of positive electron density region), $k_{\mathrm{t}}=1.3 \sim 0.8$ (flipping parameter, period 41), $k_{\mathrm{t}}=1.0 \sim 0.0($ threshold parameter, period 43), and the number of iterations was 7000. Figures S2a and S3a show the indicator combinations for $\mathrm{BABH}(14)$ and $\mathrm{BABH}(15)$, respectively. The electron density distributions of 20 and 14 trials encircled by a red circle for each are identical. Others (51 and 65 attempts) at the lower-left corner [$I_{\rho}<26$ and 24 for $\mathrm{BABH}(14)$ and $\mathrm{BABH}(15)$, respectively] are also identical with slight distortion to the best results. The obtained electron densities (and phases of structure factors) were translated to match the conventional origin of the determined space group $I 2_{1} 3$. The final structure factors are shown in Table 1 of the main text. The lower panels (b and c) of Figs. S1 and S 2 indicate the norms of the structure factors and phases calculated from the best electron densities as a function of $h^{2}+k^{2}+l^{2}$. The Laue class $m \overline{3}$ allows different norms of $(h k l)$ and $(k h l)$ while reserving the identity for their cyclic permutations. The positive/negative symmetry of the phase reflects the Friedel law. Figures S4 and S5 show the electron density distribution of $\mathrm{BABH}(15)$ and a close-up of that of $\mathrm{BABH}(14)$, respectively. Analyses of the electron density indicated that local maxima well represent the skeletal graphs. Fractional coordinates of the vertices (up to two digits) are $(0.17,0.17,0.17),(0.34,0.34,0.34),(0.65,0.57$, $0.37)$, and ($0.62,0.34,0.47$). The first and last halves are on a body diagonal and at general positions, respectively. The network geometry is compared with the ideal noh net in Fig. S6. Table S2 summarizes some quantities derived from the aggregation model. Figure S7 displays alternative representations of the connectivity (line graph) of the electron density distribution.

Figure S2. Summary of the analysis for $\mathrm{BABH}(14)$. a) Distribution of indicator combinations for $\mathrm{BABH}(14)$. The chosen solution is marked by a red circle; b) Distribution of $|F|$; c) Distribution of the phase divided by π.

Figure S3. Summary of the analysis for $\operatorname{BABH}(15)$. a) Distribution of indicator combinations for $\mathrm{BABH}(15)$. The chosen solution is marked by a red circle; b) Distribution of $|F|$; c) Distribution of the phase divided by π.

Figure S4. Electron density distribution of $\mathrm{BABH}(15)$.

Figure S5. Close-up of electron density distribution of $\mathrm{BABH}(14)$ viewed along the [111] (threefold axis). The distortion of the six-membered circuit is evident.

Figure S6. Comparison of the (a) experimentally deduced and (b) ideal noh nets. Colors in a) distinguish the vertices on a threefold axis and at a crystallographically general position. Distances between selected vertices are shown in a) in unit of the cell constant, a, whereas all distances in the ideal noh net (with completely flat junctions) are equal. In reality, there is another net related by a half translation along the body diagonal in (a).

Table S2. Phase sequence against the temperature of $\mathrm{BABH}(14)$ and $\mathrm{BABH}(15)$ and some quantities derived from the structural analysis for chiral $I 2_{1} 3$ and achiral $I a \overline{3} d /$ Gyroid phases

Phase sequence
BABH(14): crystal $-402.6 \mathrm{~K} \rightarrow$ chiral cubic phase $-432.1 \mathrm{~K} \rightarrow$ isotropic liquid
BABH(15): crystal - 402.6 K \rightarrow chiral cubic phase - ca. $430 \mathrm{~K} \rightarrow$

$$
\text { Gyroid }(I a \overline{3} d) \text { phase }-432.2 \mathrm{~K}->\text { isotropic liquid }
$$

	BABH(14)	BABH(15)	
phase	chiral phase	chiral phase	achiral phase
a / nm	12.20 (424.1 K)	12.56 (418.3 K)	7.98 (429.5 K)
number of molecules in a cell ${ }^{\dagger}$	1600	1700	440
space group	I213 (No. 199)	I213 (No. 199)	$I a \overline{3} d$ (No. 230)
number of junctions in a cell	64	64	16
number of molecules per junction	25	27	28
linear distance between	$2.53 \mathrm{~nm}, 2.81 \mathrm{~nm}$	$2.52 \mathrm{~nm}, 2.98 \mathrm{~nm}$	2.82 nm
bonding junctions ${ }^{\ddagger}$	$2.29 \mathrm{~nm}, 3.08 \mathrm{~nm}$	$2.38 \mathrm{~nm}, 3.17 \mathrm{~nm}$	2.82 nm
linear distance between non-bonding junctions ${ }^{9}$	3.72 nm	3.92 nm	3.46 nm

${ }^{\dagger}$ Assuming the bulk density of $1.00 \mathrm{~g} \mathrm{~cm}^{-3}$.
${ }^{\ddagger}$ For the chiral phase, the upper line contains ones including a vertex on a threefold axis, whereas the lower line ones on the six-membered ring.
No assumption is necessary for the $I a \overline{3} d$ phase ($\sqrt{2 a / 4)}$ because of the symmetry
${ }^{9}$ Distance between nearest junctions on a body diagonal of the cell.

Figure S7. Idealized illustration of structures of a) chiral $I 2_{1} 3$ and b) achiral $I a \overline{3} d /$ Gyroid phases in terms of planar triangles, which are cores of aggregated molecular cores.

Discussion reaching to the aggregation model

Based on the entropic and other evidence of molten states of alkyl chains in most liquid crystals [s4-s6], our thermodynamic [s7] and structural [s8] studies indicated that a fundamental aggregation mode of (layered) smectic liquid crystals of chain-core type mesogenic molecules is the alternating stack of core and chain layers. Further, our experiments [s9,10] and the survey of existing literature [s11] revealed that many orthogonal smectics (smectic A, B, and E phases) exhibit one of two dependencies of their layer spacings, $0.19 \mathrm{~nm}\left(\mathrm{CH}_{2}\right)^{-1}$ and $0.14 \mathrm{~nm}\left(\mathrm{CH}_{2}\right)^{-1}$, where the CH_{2} means that in an alkyl chain in a molecule. Since both magnitudes are larger than expected for a single highly-disordered alkyl chain, the smectic aggregation must contain layers to which alkyl groups from both sides contribute [s9-s11]. The former dependence is reasonable for the increment of chains normal to the layer on average. The smaller dependence of the latter indicates the inclination of the alkyl chain from the layer normal. Since alkyl chains from both sides doubly contribute to a single alkyl layer, an increment by a methylene group are $(0.19 / 2) \mathrm{nm}$ and $(0.14 / 2) \mathrm{nm}$ for normal and inclined alkyl chains, respectively.

The Gyroid phase consists of not flat but continuously curved layers (known as triply periodic minimal surface), resulting in continuous variation of molecular orientation. However, on the body-diagonals of unit cells, molecules must align along those because of the symmetry. Therefore, the same analysis as the orthogonal smectics applies. The previous paper [s12] studied the two Gyroid phases separated by the present chiral cubic phase in the phase diagram against the chain length (n). Their chain-length dependences of the cell constants are $a / \mathrm{nm}=3.91+0.31 n$ and $a / \mathrm{nm}=4.72+0.22 n$ for short- and long-chain members, respectively [s13]. Considering four molecules along the body-diagonal ($\sqrt{3} a)$, we revealed the averaged molecular aggregation mode as the inclined chain state for short-chain members by $0.31 \mathrm{~nm}\left(\mathrm{CH}_{2}\right)^{-1} \times \sqrt{3 / 4}$ $\approx 0.134 \mathrm{~nm}\left(\mathrm{CH}_{2}\right)^{-1}$. Since the experimental magnitude of $0.22 \mathrm{~nm}\left(\mathrm{CH}_{2}\right)^{-1} \times \sqrt{3} / 4 \approx 0.095 \mathrm{~nm}\left(\mathrm{CH}_{2}\right)^{-1}$ for the long-chain members just fits $(0.19 / 2) \mathrm{nm}\left(\mathrm{CH}_{2}\right)^{-1}$, we concluded that the chain is parallel to a body-diagonal with full interdigitation.

The molecules on the body diagonals of the present structural solution align parallel to those by symmetry. A body-diagonal contains four junctions with parallel molecules and vacant centers of two sixmembered rings. Assuming that the parallel molecules are responsible for the chain-length dependence of the cell constant, $a / \mathrm{nm}=6.91+0.38 n$ [s13], we have $0.38 \mathrm{~nm}\left(\mathrm{CH}_{2}\right)^{-1} \times \sqrt{3} / 4 \approx 0.165 \mathrm{~nm}\left(\mathrm{CH}_{2}\right)^{-1}$, which is just the sum $\left[(0.19 / 2) \mathrm{nm}\left(\mathrm{CH}_{2}\right)^{-1}+(0.14 / 2) \mathrm{nm}\left(\mathrm{CH}_{2}\right)^{-1}\right]$. Alkyl chains at two ends of a molecular core are in different environments; one between the three-way junctions and the other directed to the six-membered ring. They would differently contribute to the cell size. Considering their locations, we assign the straight conformation between the two junctions and the inclined one to the other.

References to Supporting Information
s1. Oka, T., Acta Crystallogr. Sect. A, 2022, 78, 430-436.
s2. Oka, T., Acta Crystallogr. Sect. A, 2023, 79. 51-58.
s3. Ozawa, K.; Yamamura, Y.; Yasuzuka, S.; Mori, H.; Kutsumizu, S.; Saito, K., J. Phys. Chem. B, 2008, 112, 12179-12181.
s4. Horiuchi, K.; Yamamura, Y.; Pelka, R.; Sumita, M.; Yasuzuka, S.; Massalska-Arodz, M.; Saito, K., J. Phys. Chem. B, 2010, 114, 4870-4875.
s5. Yamamura, Y.; Adachi, T.; Miyazawa, T.; Horiuchi, K.; Sumita, M.; Massalska-Arodz, M.; Urba, S.; Saito, K., J. Phys. Chem. B, 2012, 116, 9255-9260.
s6. Adachi, T.; Saitoh, H.; Yamamura, Y.; Hishida, M.; Ueda, M.; Ito, S.; Saito, K., Bull. Chem. Soc. Jpn., 2013, 86, 1022-1027.
s7. Miyazawa, T.; Yamamura, Y.; Hishida, M.; Nagatomo, S.; Massalska-Arodz, M.; Saito, K., J. Phys. Chem. B, 2013, 117, 8293-8299.
s8. Saito, K.; Miyazawa, T.; Fujiwara, A.; Hishida, M.; Saitoh, H.; Massalska-Arodz, M.; Yamamura, Y., J. Chem. Phys., 2013, 139, 114902.
s9. Yamamura, Y.; Tsuchiya, R.; Fujimura, S.; Hishida, M.; Saito, K., J. Phys. Chem. B, 2017, 121, 14381447.
s10. Yamamura, Y.; Murakoshi, T.; Iwagaki, S.; Osiecka, N.; Saitoh, H.; Hishida, M.; Galewski, Z.; Massalska-Arodz, M.; Saito, K., Phys. Chem. Chem. Phys., 2017, 19, 19434-19441.
s11.Yamamura, Y.;, Murakoshi, T.; Hishida, M.; Saito, K., Phys. Chem. Chem. Phys., 2017, 19, 25518-25526.
s12. Yamamura, Y.; Nakazawa, Y.; Kutsumizu, S.; Saito, K., Phys. Chem. Chem. Phys., 2019, 21, 2370523712.
s13.Kutsumizu, S., Mori, H.; Fukatami, M.; Naito, S.; Sakajiri, K.; Saito, K., Chem. Mater., 2008, 20, 36753687.

