Electronic Supplementary Material (ESI) for RSC Sustainability. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Triazaphosphaadamantane- Functionalized Terpyridine Metal Complexes: Cyclohexane Oxidation in Homogeneous and Carbon-Supported Catalysis

Ivy L. Librando,¹ Anup Paul,^{1*} Abdallah G. Mahmoud,^{1,2} Atash V. Gurbanov,¹ Sónia A.C. Carabineiro,^{1,3*} M. Fátima C. Guedes da Silva,^{1,4} Carlos F.G.C. Geraldes,^{5,6} Armando J.L. Pombeiro^{1,7}

¹ Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; ivy.librando@tecnico.ulisboa.pt (I.L.L.); anuppaul@tecnico.ulisboa.pt (A.P.); abdallah.mahmoud@tecnico.ulisboa.pt (A.G.M.); organik10@hotmail.com (A.V.G.); fatima.guedes@tecnico.ulisboa.pt (M.F.C.G.S.); pombeiro@tecnico.ulisboa.pt (A.J.L.P.)

² Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt

³ LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal

⁴ Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

⁵ Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal; geraldes@uc.pt

⁶ Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535 Coimbra, Portugal ⁷ Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation

*Correspondence: anuppaul@tecnico.ulisboa.pt (A.P.), sonia.carabineiro@fct.unl.pt (S.A.C.C.)

Figure S1. ¹H NMR spectrum of (*p*-tpy-C₆H₄-CH₂-PTA)Br (PTA-Bztpy bromide) in DMSO-*d*₆ (300 MHz).

Figure S2. ¹³C NMR spectrum of (*p*-tpy-C₆H₄-CH₂-PTA)Br (PTA-Bztpy bromide) in DMSO-*d*₆ (300 MHz).

Figure S4. HSQC spectrum of (*p*-tpy-C₆H₄-CH₂-PTA)Br (PTA-Bztpy bromide) in DMSO-*d*₆ (300 MHz).

Figure S5. ³¹P NMR spectrum of (*p*-tpy-C₆H₄-CH₂-PTA)Br (PTA-Bztpy bromide) in DMSO-*d*₆ (300 MHz).

Figure S6. ESI-MS spectra of (*p*-tpy-C₆H₄-CH₂-PTA)Br (PTA-Bztpy bromide)

Figure S7. Crystal structure of complex **2**. Top: ellipsoid plot (drawn at 30% probability level) with partial atom labelling scheme; bromide counter anions were omitted for clarity. Bottom: extensive H…Br interactions (represented in dashed cyan colour)

ESI(+)

Figure S8. ESI(+)MS spectrum of complex 1.

ESI(+)

Figure S9. ESI(+)MS spectrum of complex 2.

Figure S10. ESI(+)MS spectrum of complex 3.

Figure S11. N₂ adsorption-desorption isotherm (77 K) of 3-CNT-ox-Na.

Figure S12. Effect of reaction temperature in the KA oil yield using complex **3** (3 mol % relative to the substrate) as catalyst. Reaction conditions: cyclohexane (5.0 mmol), 70% aqueous TBHP (10 mmol), 2 h, MW (30 W), 2 mL MeCN.

Figure S13. Effect of reaction time in the KA oil yield using complex **3** (3 mol % relative to the substrate) catalyst. Reaction conditions: cyclohexane (5.0 mmol), 70% aqueous TBHP (10 mmol), MW (30 W, 100°C), 2 mL MeCN.

Figure S14. Effect of temperature in the KA oil yield . Reaction conditions: **3**-CNT-ox-Na as catalyst (0.5 mol % relative to substrate), cyclohexane (5.0 mmol), 70% aqueous TBHP (10 mmol), 2 h, MW (30 W), 2 mL MeCN.

Figure S15. Effect of reaction time in the KA oil yield using 3-CNT-ox-Na as catalyst (0.5 mol % relative to the substrate). Reaction conditions: cyclohexane (5.0 mmol), 70% aqueous TBHP (10 mmol), MW (30 W, 100°C), 2 mL MeCN.

 Table S1. Crystal data and structure refinement details for complex 2.

Formula	$C_{56}H_{56}Br_4N_{12}NiP_2$
Mol.wt	1337.41
Cryst. Syst.	Triclinic
Space group	P-1
Temperature <i>(K)</i>	150(2)
a (Å)	8.7950(3)
b (Å)	16.3840(5)
c (Å)	22.2853(7)
α, °	88.312 (2)
β, °	80.934(3)
γ, °	85.706(3)
V (Å ³)	3161.7(3)
Z	2
D _{calc} (g/cm ³)	1.405
F000	1348
μ(mm ⁻¹)	2.9229
Refl. measured	365649

Independent refl.	12654
Refl.with I > $2\sigma(I)$	5318
No. parameters	676
Rint	0.1287
R(F) (I ≥ 2)	0.3370
wR (F²) (all data)	0.4089
GOF (F ²)	1.145

Table S2. Characterization of supports by N_2 adsorption analysis at -196 °C.

Carbon support	S _{вет} , m ² g ⁻¹	Pore volume, cm ³ g ⁻¹	Pore size, nm		
AC	866	0.45	5.2		
AC-ox	724	0.31	4.6		
AC-ox-Na	477	0.18	4.7		
CNT	302	2.85	30.3		
CNT-ox	301	1.62	19.0		
CNT-ox-Na	261	1.21	16.5		

Table S3. Amount of Manganese (% wt) loaded onto the carbon supports used in this study.^a

Carbon material	Mn (wt %)
AC	0.07
AC-ox	2.85
AC-ox-Na	3.76
CNT	2.88
CNT-ox	0.78
CNT-ox-Na	2.91

^a Results obtained from ICP-AES analysis.

Table S4. Selected data of the KA oil yield before and after PPh₃ treatment.

Catalyzat	Catalyst Solvent	Before P <mark>Ph</mark> ₃ treatment			A <mark>fter PP</mark> h₃ treatment				
Catalyst		<mark>Yield (%)⁵</mark>			Yield (%) ^b				
		K	A	Total	- <mark>N/A</mark>	K	A	Total	<mark>r\/A</mark>
3-CNT-ox-Na	MeCN:H ₂ O(3:1v/v)	<mark>15.2</mark>	<mark>5.7</mark>	<mark>20.9</mark>	<mark>2.7</mark>	<mark>13.8</mark>	<mark>11.4</mark>	<mark>25.2</mark>	<mark>1.2</mark>
3-CNT-ox-Na	<mark>MeCN:H₂O(1:1v/v)</mark>	<mark>15.0</mark>	<mark>8.4</mark>	<mark>23.4</mark>	<mark>1.8</mark>	<mark>16.1</mark>	<mark>13.6</mark>	<mark>29.6</mark>	<mark>1.2</mark>

^a Reaction conditions: cyclohexane (5.0 mmol), 70% aqueous TBHP (10 mmol), CH₃NO₂ (100 μL), 0.5 mol % catalyst, 2 h, MW (30 W), 100 °C, 2 mL solvent. ^b Molar yields based on substrate determined by GC analysis, i.e., moles of products (K + A) per 100 mol of cyclohexane; K= cyclohexanone, A= cyclohexanol. ^c Ratio between the molar concentrations of K and A

Table S5. Selected data on KA oil yield and corresponding selectivity values.

Catalvet	Solvent	<mark>Yield, % ^b</mark>			Selectivity, % ^c		
oddayst	_	K	A	Total	K	A	
<mark>3 (Mn)</mark>	MeCN	<mark>11.48</mark>	<mark>1.86</mark>	<mark>13.34</mark>	<mark>86.1</mark>	<mark>13.9</mark>	
<mark>3 (Mn)</mark>	MeCN: acetone (1:1v/v)	<mark>5.00</mark>	<mark>3.23</mark>	<mark>8.23</mark>	<mark>60.8</mark>	<mark>39.2</mark>	
<mark>3 (Mn)</mark>	<mark>MeCN:H₂O(1:1v/v)</mark>	<mark>11.75</mark>	<mark>9.32</mark>	<mark>21.07</mark>	<mark>55.8</mark>	<mark>44.2</mark>	
<mark>3-CNT-ox-Na</mark> ₫	MeCN	<mark>5.39</mark>	<mark>4.62</mark>	<mark>10.01</mark>	<mark>53.8</mark>	<mark>46.2</mark>	
<mark>3-CNT-ox-Na</mark> ₫	MeCN: acetone (1:1v/v)	<mark>5.56</mark>	<mark>4.69</mark>	<mark>10.3</mark>	<mark>54.2</mark>	<mark>45.8</mark>	
<mark>3-CNT-ox-Na</mark> ^d	<mark>MeCN:H₂O(1:1v/v)</mark>	<mark>16.06</mark>	<mark>13.6</mark>	<mark>29.6</mark>	<mark>54.2</mark>	<mark>45.8</mark>	

^a Reaction conditions: cyclohexane (5.0 mmol), 70% aqueous TBHP (10 mmol), CH₃NO₂ (100 μL), 100°C, MW (2 h, 30 W), 3 mol % catalyst loading, 2 mL solvent. ^b Molar yields based on substrate determined by GC analysis (after PPh₃ treatment), i.e., moles of products (K + A) per 100 mol of cyclohexane; K= cyclohexanone, A= cyclohexanol. ^c Moles of desired product per mol of converted cyclohexane. ^d 0.5 mol % catalyst loading.