## **Supporting information**

## Upcycling of textile waste into high added value cellulose porous materials, aerogels and cryogels

Marion Négrier<sup>1</sup>, Elise El Ahmar<sup>2</sup>, Romain Sescousse<sup>3</sup>, Martial Sauceau<sup>3</sup>, Tatiana Budtova<sup>1</sup>\*

<sup>1</sup>Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
<sup>2</sup>Mines Paris, PSL University, Centre for Thermodynamics of Processes (CTP), 77300 Fontainebleau, France
<sup>3</sup>Centre RAPSODEE, UMR CNRS 5302, IMT Mines Albi, Université de Toulouse, France

Corresponding author: Tatiana Budtova, <u>tatiana.budtova@minesparis.psl.eu</u>





<sup>1</sup>H NMR in d<sub>6</sub>-DMSO of [DBNH][OAc]



Figure S2.



cellulose concentration.





Photos of cellulose aerogels, cryogels and xerogels from MCC and cellulose from textiles. The solvent was [EMIM][OAc]/DMSO and cellulose was coagulated using Method 1.



Figure S4. Alcogels of cellulose dissolved in [EMIM][OAc], coagulation Method 1.





Photos of aerogels from MCC, rayon and cotton. The solvent was [DBNH][OAc]/DMSO and cellulose was coagulated using Method 2.



Figure S6 Morphology of aerogel (A) and cryogel (B) from cotton dissolved in [DBNH][OAc]/DMSO and coagulated using Method 1.

Table S1. Dispersion  $\delta_d$ , polar  $\delta_p$ , hydrogen bonding  $\delta_h$  and total  $\delta_{total}$  solubility parameters of cellulose.  $\delta_d$ ,  $\delta_p$  and  $\delta_h$  are taken from (Barton, 1991),  $\delta_{total} = (\delta_d^2 + \delta_p^2 + \delta_h^2)^{1/2}$ 

| $\delta_d$ , MPa <sup>0.5</sup> | $\delta_p$ , MPa <sup>0.5</sup> | $\delta_h$ , MPa <sup>0.5</sup> | $\delta_{total}$ , MPa <sup>0.5</sup> |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------------|
| 24.3                            | 19.9                            | 22.5                            | 38.6                                  |





Volume shrinkage (a), density (b), porosity (c), pore volume (d) and specific surface area of aerogels and cryogels made by cellulose dissolution in [DBNH][OAc]/DMSO

and coagulated using Method 1 (direct coagulation) or Method 2 (delayed demixing using Soxhlet extraction thimbles). Volume and density were measured with Geopyc.



## Figure S8.

Volume shrinkage (a) and density (b) of aerogels, cryogels and xerogels obtained by cotton dissolution in [EMIM][OAc]/DMSO or in [DBNH][OAc]/DMSO, coagulated using Method 1 and measured either manually (M) or with Geopyc (G). Red line in (b) shows theoretical density calculated supposing no shrinkage

Aerogels



Figure S9.

Morphology of aerogels (A, C, E and G) and cryogels (B, D, F and H) from MCC (A, B), rayon (C, D), viscose (E, F) and cotton (G, H) made using [EMIM][OAc]/DMSO and coagulation Method 1. The small scale does not allow the observation of macrovoids in cotton sample.



Figure S10. Morphology of xerogels made from MCC and rayon dissolved in [EMIM][OAc]/DMSO using coagulation Method 1.



Figure S11. Morphology of xerogels made of textile dissolved in [DBNH][OAc]/DMSO using coagulation Method 1.

## References

Barton, A. F. M. (1991). *Handbook of Solubility Parameters and Other Cohesion Parameters*. CRC Press.