Electronic Supplementary Information (ESI)

In-situ Growth of Crystalline Carbon Nitride on LaOCl for Photocatalytic Overall Water Splitting

Yuan Lin, Xuxu Wang, Xianzhi Fu, Wenyue Su*

State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China *Corresponding author. E-mail: suweny@fzu.edu.cn

Contents list

Experimental Section

Figure S1. Schematic of two-step photon excitation (a) and one-step photon excitation (b) pathway.

Figure S2. SEM images of LaOCl (a) and CCN (b).

Figure S3. HRTEM image of PCN/LaOCl (a) and CCN/LaOCl (b).

Figure S4. Nitrogen adsorption–desorption isotherms of CCN, CCN/LaOCl-*x* and PCN/LaOCl.

Figure S5. SEM image of (a) CCN/LaOCl-1.5 and (b) CCN/LaOCl-2.

Figure S6. UV/Vis DRS spectrum of CCN, CCN/LaOCl-*x* and LaOCl.

Figure S7. High resolution XPS spectra of (a) C 1s and (b) N 1s of CCN/LaOCl and CCN. (c) High resolution XPS spectra of La 3d for LaOCl and CCN/LaOCl.

Figure S8. The transient photocurrents of the prepared electrodes covered with PCN/LaOCl and CCN/LaOCl.

Figure S9. The EIS Nyquist plots of the prepared electrodes covered with PCN/LaOCl and CCN/LaOCl.

Figure S10. Photoluminescence spectra of PCN/LaOCl and CCN/LaOCl with excitation wavelength of 363 nm.

Figure S11. XRD patterns of CCN/LaOCl before and after the photocatalytic reaction.

Figure S12. XPS survey spectrum (a), High resolution XPS spectra of C 1s (b), N 1s (c), La 3d (d), O 1s (e), Cl 2p (f), Pt 4f (g) and Co 2p (h) for Pt, CoO_X loaded CCN/LaOCl before and after the photocatalytic reaction.

Figure S13. UPS spectra of CCN (a) and LaOCl (b).

Figure S14. Tauc plots of CCN (a) and LaOCl (b).

Figure S15. (a) HRTEM images of the CCN/LaOCl sample after the deposition of Pt. The corresponding EDS spectra (inset) indicates that there is a signal of Pt.

Figure S16. (a) HRTEM image of the CCN/LaOCl sample after the deposition of CoO_X , the image showing two variant shapes, among which the sheet-like one corresponds to CCN matrix, this is verified by the EDS mapping as displayed in the inset of (a). (b) EDS-HAADF image of the CCN/LaOCl sample after the deposition of CoO_X , the line profile across the nanoparticle in the inset of (b) demonstrates that the bright contrast corresponds to CoO_X particles.

Table S1. The BET specific surface area and the CCN amount of CCN/LaOCl-x samples.

Table S2. Fs-TA exponential function fitted parameters of absorption decay for PCN/LaOCl and CCN/LaOCl at 650 nm.

Table S3. Exponential function fitted parameters of the time-resolved PL decay spectra for the prepared samples.

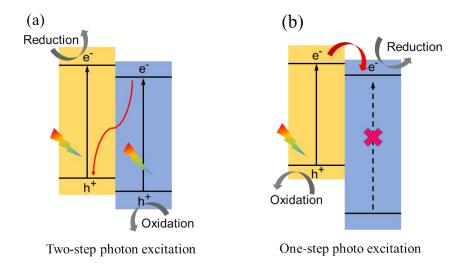

Table S4. Comparison of photocatalytic activity for overall water splitting over carbon nitride-based materials.

 Table S5. AQE of CCN/LaOCl for overall water splitting.

Experimental Section

Characterization of materials: Scanning electron microscopy (SEM) images were collected using a Hitachi SU8010 field emission scanning electron microscope. Transmission electron microscopy (TEM) was performed using a Talos F200S microscope. The powder X-ray diffraction (XRD) was analyzed using a Bruker D8 Advance X-ray diffractometer. Solid-state ¹³C NMR measurements were performed on a Bruker Advance 500 spectrometer. Electron paramagnetic resonance (EPR) spectra was recorded on a Bruker A300 spectrometer. UV-vis diffuse reflectance spectra (UV-vis DRS) were obtained using a Varian Cary 5000 Scan UVvis-NIR spectrophotometer. The Brunauer-Emmett-Teller (BET) specific surface areas were measured with an ASAP 2020 (Micromeritics Instrument Corp.). The contents of C and N are determined by element analysis (Vario EL Cube). X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALAB 250 photoelectron spectroscope system with the C1s peak (284.6 eV) as a reference. Ultraviolet photoelectron spectroscopy (UPS) measurements were conducted using an unfiltered He I (21.22 eV) gas discharge lamp. Femtosecond Transient Absorption (fsTA) measurements were performed through a femtosecond Ti:Sapphire regenerative amplified laser system (Spectra Physics, Spitfire-Pro) and the corresponding data acquisition system (Ultrafast Systems, Helios model), samples were irradiated with 400 nm laser light, and the data were collected by the acquisition system as the three-dimensional wavelength-time-absorbance matrices that were exported for further use with the fitting software. Photoluminescence (PL) spectra were obtained with an F-7000 FL spectrophotometer. The electrochemical impedance spectra (EIS) and photocurrent-time (I-t) profiles were conducted on a CHI660D electrochemical workstation using a Pt plate as the counter electrode and a saturated calomel electrode as the reference electrode, respectively. A 0.2 M Na₂SO₄ solution was used as the electrolyte. To fabricate the working electrode, 20 mg sample was dispersed in 1 mL dimethylformamide (DMF) solvent with 40 µL Nafion solution (5 wt.%, Du Pont) to form a homogeneous ink with ultra-sonication for 30 min. Next, 15 µL of the dispersion was loaded onto fluorine-doped tin oxide (FTO) glass with an area of 0.25 cm^2 as the working electrode. The work functions (WF) of CCN and LaOCl were determined by Kelvin probe system (SKP5050, KP Technology Ltd.) with a single-point measurement. The work function of the tip was corrected using a gold disk (gold, 5.1 eV). The relationship between the (work functions) WF and the contact potential difference (CPD) can be calculated on the followed formula:

$$WF_{sample} = WF_{tip} + CPD$$

Figure S1. Schematic of two-step photon excitation (a) and one-step photon excitation (b) pathway.

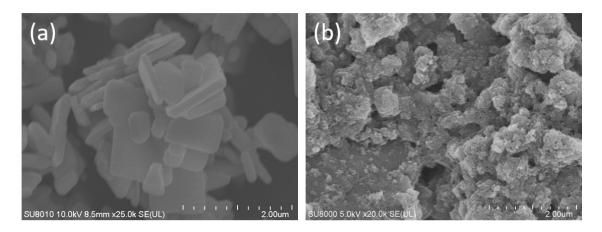


Figure S2. SEM images of LaOCl (a) and CCN (b).

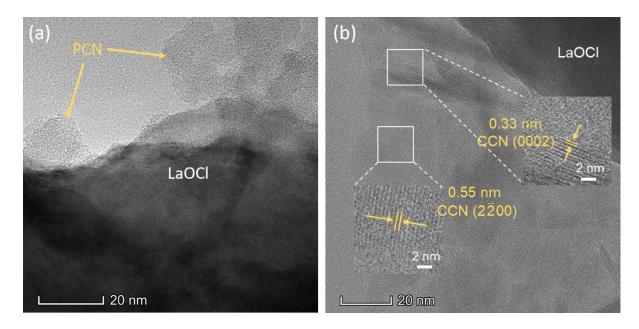
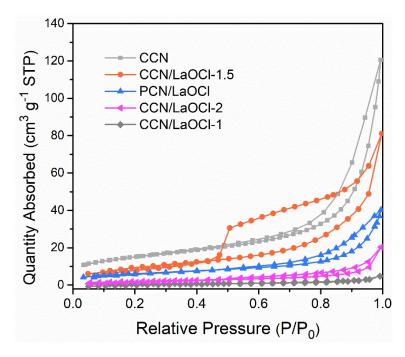



Figure S3. HRTEM image of PCN/LaOCl (a) and CCN/LaOCl (b).

Figure S4. Nitrogen adsorption–desorption isotherms of CCN, CCN/LaOCl-*x* and PCN/LaOCl.

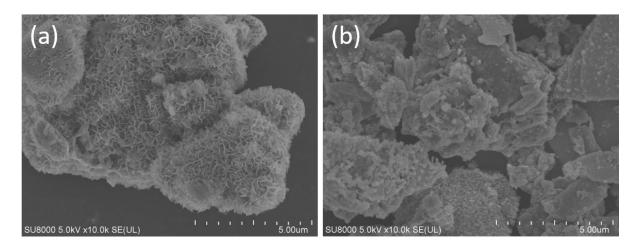
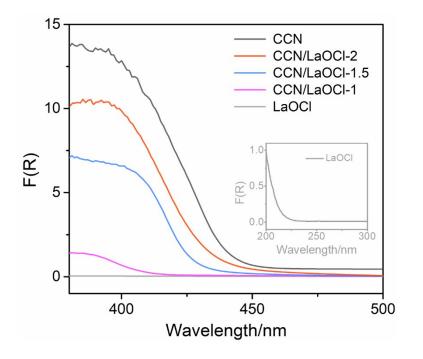
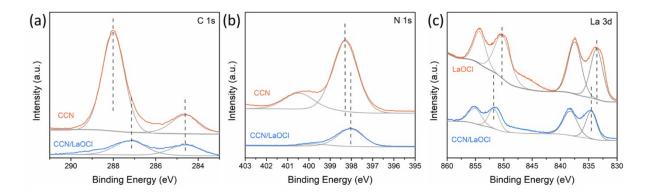
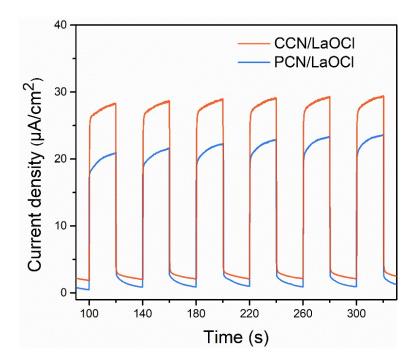


Figure S5. SEM image of (a) CCN/LaOCl-1.5 and (b) CCN/LaOCl-2.

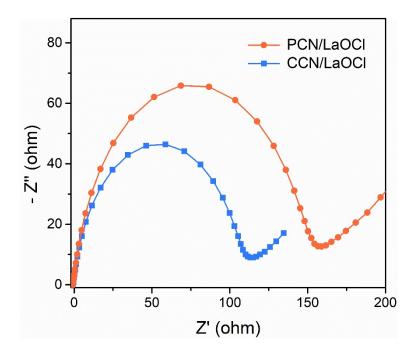

Figure S6. UV/Vis DRS spectrum of CCN, CCN/LaOCl-*x* and LaOCl.

Figure S7. High resolution XPS spectra of (a) C 1s and (b) N 1s of CCN/LaOCl and CCN. (c) High resolution XPS spectra of La 3d for LaOCl and CCN/LaOCl.

Figure S8. The transient photocurrents of the prepared electrodes covered with PCN/LaOCl and CCN/LaOCl.

Figure S9. The EIS Nyquist plots of the prepared electrodes covered with PCN/LaOCl and CCN/LaOCl.

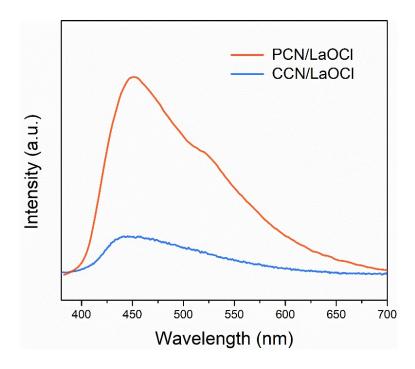


Figure S10. Photoluminescence spectra of PCN/LaOCl and CCN/LaOCl with excitation wavelength of 363 nm.

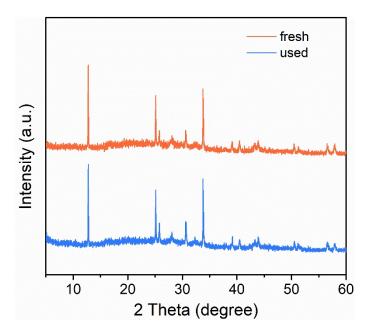
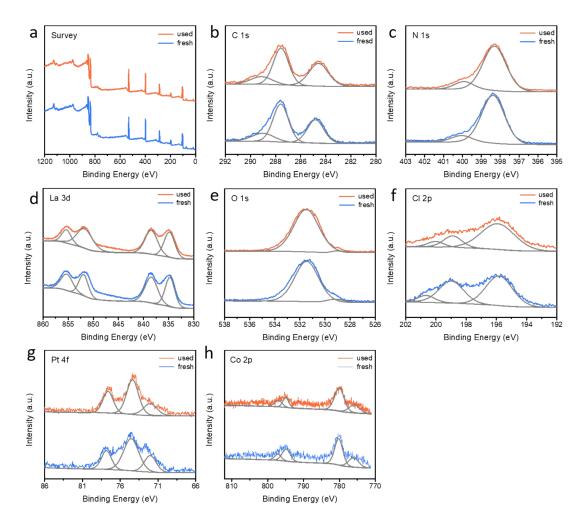



Figure S11. XRD patterns of CCN/LaOCl before and after the photocatalytic reaction.

Figure S12. XPS survey spectrum (a), High resolution XPS spectra of C 1s (b), N 1s (c), La 3d (d), O 1s (e), Cl 2p (f), Pt 4f (g) and Co 2p (h) for Pt, CoO_X loaded CCN/LaOCl before and after the photocatalytic reaction.

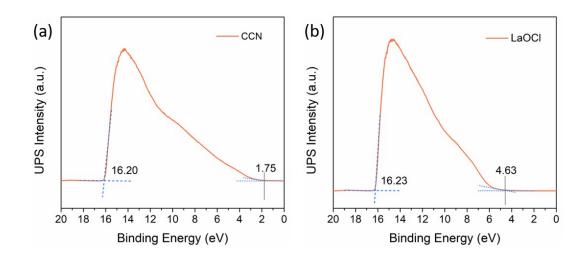


Figure S13. UPS spectra of CCN (a) and LaOCl (b).

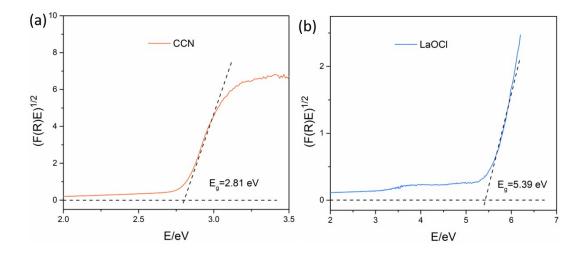
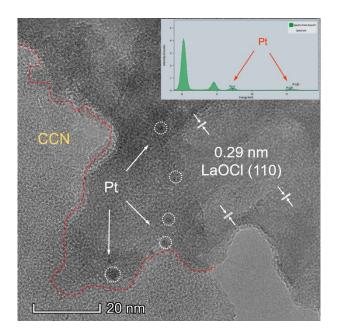
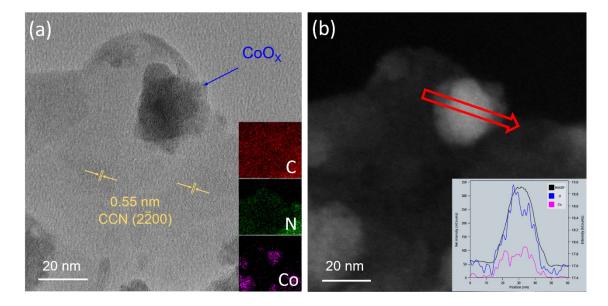




Figure S14. Tauc plots of CCN (a) and LaOCl (b).

Figure S15. (a) HRTEM images of the CCN/LaOCl sample after the deposition of Pt. The corresponding EDS spectra (inset) indicates that there is a signal of Pt.

Figure S16. (a) HRTEM image of the CCN/LaOCl sample after the deposition of CoO_X , the image showing two variant shapes, among which the sheet-like one corresponds to CCN matrix, this is verified by the EDS mapping as displayed in the inset of (a). (b) EDS-HAADF image of the CCN/LaOCl sample after the deposition of CoO_X , the line profile across the nanoparticle in the inset of (b) demonstrates that the bright contrast corresponds to CoO_X particles.

Samples	Specific surface area (m ² /g)	wt. % of CCN
LaOCl	3.8	-
CCN/LaOC1-0.5	4.0	5.7
CCN/LaOCl-1	4.3	13.1
CCN/LaOCl-1.5	34.3	30.9
CCN/LaOC1-2	8.6	40.4
CCN/LaOC1-3	8.1	45.7

Table S1. The BET specific surface area and the CCN amount of CCN/LaOCl-x samples.

Table S2. Fs-TA exponential function fitted parameters of absorption decay for PCN/LaOCl and CCN/LaOCl at 650 nm.

Materisla	τ ₁ (ps)	A ₁ (%)	$ au_2$ (ps)	A ₂ (%)	Average τ (ps)
PCN/LaOC1	12.9	55.4	158	44.6	77.6
CCN/LaOCl	13.5	58.2	224	41.8	101.4

Table S3. Exponential function fitted parameters of the time-resolved PL decay spectra for the prepared samples.

Samples	τ_1 (ns)	A ₁ (%)	τ_2 (ns)	A ₂ (%)	Average τ (ns)
PCN/LaOCl	3.30	16	0.61	84	1.03
CCN/LaOCl	4.16	39	0.79	61	2.12

Materials	Reaction conditions	H_2 evolution rate (µmol h ⁻¹)	O ₂ evolution rate (μmol h ⁻¹)	AQE (%)	Ref.
CCN/LaOCl	300 W Xe lamp, 50 mg catalyst, 0.5 wt.% Pt, 0.2 wt.% CoO _X cocatalyst	60.6 (λ > 300 nm) 20.2 (λ > 400 nm)	28.1 (λ > 300 nm) 9.1 (λ > 400 nm)	1.13 (400 nm)	This work
PCN/LaOCl	300 W Xe lamp, 50 mg catalyst, 0.5 wt.% Pt, 0.2 wt.% CoO _X cocatalyst	22.3 (λ > 300 nm) 8 (λ > 400 nm)	10.7 (λ > 300 nm) 3.8 (λ > 400 nm)	0.33 (400 nm)	[1]
g-C3N4/rGO/PDIP	300 W Xe lamp, 25 mg catalyst, Pt/Cr ₂ O ₃ , Co(OH) ₂ cocatalyst	15.8 (λ > 420 nm)	7.8 (λ > 420 nm)	3.6 (420 nm)	[2]
CNN/BDCNN	300 W Xe lamp, 40 mg catalyst, 0.9 wt.% Pt and 3.0 wt.% Co(OH) ₂ cocatalyst	32.9 (λ > 300 nm) 9.85 (λ > 420 nm)	16.4 (λ > 300 nm) 4.88 (λ > 420 nm)	11.90 (400 nm)	[3]
BDCNN350/B DCNN425	300 W Xe lamp, 100 mg catalyst, 0.9 wt.% Pt and 3.0 wt.% Co(OH) ₂ cocatalyst	62.9 (λ > 300 nm)	31.3 (λ > 300 nm)	23.52 (420 nm)	[3]
PTI-550	300 W Xe lamp, 100 mg catalyst, 0.5 wt% Co and 1.0 wt% Pt cocatalyst	189 (λ > 300 nm)	91 (λ > 300 nm)	8 (365 nm)	[4]
3D g-C ₃ N ₄ NS	300 W Xe lamp, 50 mg catalyst, 1 wt.% Pt, 3 wt.% IrO ₂ cocatalyst	5.1 (λ > 420 nm)	2.5 (λ > 420 nm)	1.4 (420 nm)	[5]
Fe ₂ O ₃ /RGO/PCN	300 W Xe lamp, 40 mg catalyst, Pt cocatalyst	43.6 (λ > 300 nm) 6 (λ > 400 nm)	21.2 (λ > 300 nm) 3 (λ > 400 nm)	N/A	[6]
Pt/g-C ₃ N ₄	300 W Xe lamp, 200 mg catalyst, 3 wt.% Pt, 1 wt.% CoO _X cocatalyst	12.2 (λ > 300 nm) 1.2 (λ > 420 nm)	6.3 (λ > 400 nm) 0.6 (λ > 420 nm)	0.3 (405 nm)	[7]
Co ₃ O ₄ /HCNS/Pt	300 W Xe lamp, 20 mg catalyst, 1 wt.% Pt, 3 wt.% Co ₃ O ₄ cocatalyst	3.2 (λ > 300 nm)	1.7 (λ > 300 nm)	N/A	[8]
Pt/CoP/g-C ₃ N ₄	300 W Xe lamp, 80 mg catalyst, pH = 3, 3 wt.% Pt, 3 wt.% CoP cocatalyst	21 (λ >300 nm) 2.1 (λ > 400 nm)	10 (λ > 300 nm) 1.0 (λ > 400 nm)	N/A	[9]
$\alpha\text{-}Fe_2O_3/2D\text{-}C_3N_4$	300 W Xe lamp, 10 mg catalyst, 3 wt.% Pt, 0.1 wt.% RuO ₂ cocatalyst	0.38 (λ > 400 nm)	0.19 (λ > 400 nm)	N/A	[10]
Na-CN	300 W Xe lamp, 100 mg catalyst, 1 wt.% Pt cocatalyst	31.5 (λ > 420 nm)	15.2 (λ > 420 nm)	1.45 (420 nm)	[11]
Co ₁ -phosphide/CN	300 W Xe lamp, 20 mg catalyst,	8.2 (λ > 300 nm) 2,5 (λ > 420 nm)	4.1 (λ > 300 nm) 1.3 (λ > 420 nm)	2.2 (500 nm)	[12]
(C _{ring})-C ₃ N ₄	300 W Xe lamp, 30 mg catalyst, 3 wt.% of Pt cocatalyst	11.1 (λ > 300 nm) 4.5 (λ > 420 nm)	5.5 (λ > 300 nm) 2.2 (λ > 420 nm)	5 (420 nm)	[13]
C_{CO} - C_3N_4	300 W Xe lamp, 30 mg catalyst,	15.9 (λ > 300 nm)	7.7 (λ > 300 nm)	N/A	[14]
CQDs/ holey CN	300 W Xe lamp, 10 mg catalyst, 2 wt.% of Pt cocatalyst	9.3 (λ > 420 nm)	4.6 (λ > 420 nm)	N/A	[15]

Table S4. Comparison of photocatalytic activity for overall water splitting over carbon nitride-based materials.

CoO/g-C ₃ N ₄	LED, 50 mg catalyst,	2.5 (λ > 400 nm)	1.4 (λ > 400 nm)	1.91 (420 nm)	[16]
C ₃ N ₄ /MnO ₂	300 W Xe lamp, 100 mg catalyst,	5.5 (λ > 420 nm)	2.8 (λ > 420 nm)	~3.7 (420 nm)	[17]
g-C ₃ N ₄ -carbon dots	300 W Xe lamp, 100 mg catalyst,	$0.5 \ (\lambda > 420 \ nm)$	$0.25 \ (\lambda > 420 \ nm)$	N/A	[18]
MnO_2/g - C_3N_4	300 W Xe lamp, 100 mg catalyst, 3 wt.% of Pt cocatalyst	6.1 (λ > 400 nm)	2.9 (λ > 400 nm)	N/A	[19]
Mn-C ₃ N ₄	300 W Xe lamp, 20 mg catalyst, 0.9 wt.% of Pt cocatalyst	13.9 (λ > 300 nm) 6.1 (λ > 420 nm)	6.6 (λ > 300 nm) 2.9 (λ > 420 nm)	4.0 (420 nm)	[20]
TH-CN	300 W Xe lamp, 50 mg catalyst, 1 wt. % CoP, 1.5 wt. % Pt, Ph=5.6	10.2 (λ > 400 nm)	5.7 (λ > 400 nm)	N/A	[21]
PTI-LiNa	300 W Xe lamp, 100 mg catalyst, 0.5 wt% Co and 1.0 wt% Pt cocatalyst	273 (λ > 300 nm)	135 (λ > 300 nm)	12% (365 nm)	[22]
NdCo ₃ /PCN	300 W Xe lamp, 40 mg catalyst	11.8 (λ > 300 nm) 0.7 (λ > 420 nm)	6.0 (λ > 300 nm) 0.35 (λ > 420 nm)	2.0 (350 nm)	[23]
C ₃ N ₄ -Cl4	20 mg catalyst, Pt cocatalyst	48.2 (λ > 300 nm)	$21.8(\lambda > 300 \text{ nm})$	6.9 (420 nm)	[24]

Table S5. AQE of CCN/LaOCl for overall water splitting.

Wavelengths (nm)	H ₂ evolution (μmol/h)	Light power (mW/cm ²)	irradiated area (cm²)	AQE(%)
380	31.4	13.42	32.15	1.27
400	37.6	17.16	32.15	1.13
420	11.2	12.53	32.15	0.44
450	2.1	17.06	32.15	0.05
475	0.6	16.11	32.15	0.02

References for Supporting Information

- [1] Y. Lin, W. Su, X. Wang, X. Fu, X. Wang, Angew. Chem. Int. Ed. 2020, 59, 20919.
- [2] X. Chen, J. Wang, Y. Chai, Z. Zhang, Y. Zhu, Adv. Mater. 2021, 33, e2007479.
- [3] D. Zhao, Y. Wang, C.-L. Dong, Y.-C. Huang, J. Chen, F. Xue, S. Shen, L. Guo, *Nat. Energy* 2021, 6, 388.
- [4] L. H. Lin, Z. Y. Lin, J. Zhang, X. Cai, W. Lin, Z. Y. Yu, X. C. Wang, Nat. Catal. 2020, 3, 649.
- [5] X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, Y. Zhu, T. Zhang, Nano Energy 2019, 59, 644.
- [6] Z. Pan, G. Zhang, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 7102.
- [7] G. Zhang, Z. A. Lan, L. Lin, S. Lin, X. Wang, Chem. Sci. 2016, 7, 3062.
- [8] D. Zheng, X. N. Cao, X. Wang, Angew. Chem. Int. Ed. 2016, 55, 11512.

[9] Z. Pan, Y. Zheng, F. Guo, P. Niu, X. Wang, ChemSusChem 2017, 10, 87.

[10] X. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang, M.-T. F. Rodrigues, R.

Vajtai, J. Lou, D. Du, H. Li, P. M. Ajayan, Adv. Energy Mater. 2017, 7, 1700025.

[11] F. Guo, J. Chen, M. Zhang, B. Gao, B. Lin, Y. Chen, J. Mater. Chem. A 2016, 4, 10806.

[12] W. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu, W. Zhang, X. Mou, L. Jin, X. Zheng, W. Che, Q. Liu, T.

Yao, S. Wei, Angew. Chem. Int. Ed. 2017, 56, 9312.

[13] W. Che, W. Cheng, T. Yao, F. Tang, W. Liu, H. Su, Y. Huang, Q. Liu, J. Liu, F. Hu, Z. Pan, Z. Sun, S. Wei, J. Am. Chem. Soc. 2017, 139, 3021.

[14] X. Fang, R. Gao, Y. Yang, D. Yan, *iScience* 2019, 16, 22.

[15] T. Song, P. Zhang, T. Wang, A. Ali, H. Zeng, Appl. Catal. B-Environ. 2018, 224, 877.

[16] F. Guo, W. Shi, C. Zhu, H. Li, Z. Kang, Appl. Catal. B-Environ. 2018, 226, 412.

[17] J. Liu, N. Y. Liu, H. Li, L. P. Wang, X. Q. Wu, H. Huang, Y. Liu, F. Bao, Y. Lifshitz, S. T. Lee, Z. H. Kang, *Nanoscale* 2016, 8, 11956.

[18] D. Qu, J. Liu, X. Miao, M. Han, H. Zhang, Z. Cui, S. Sun, Z. Kang, H. Fan, Z. Sun, *Appl. Catal. B-Environ.* 2018, 227, 418.

[19] Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Lian, X. Zhu, P. Yan, Y. Lei, S. Yuan, H. Li, *Appl. Catal. B-Environ.* 2019, 241, 452.

[20] S. Sun, G. Shen, J. Jiang, W. Mi, X. Liu, L. Pan, X. Zhang, J. J. Zou, Adv. Energy Mater. 2019, 1901505.

[21] Z. Pan, M. Liu, G. Zhang, H. Zhuzhang, X. Wang, J. Phys. Chem. C 2021, 125, 9818.

[22] M. Liu, C. Wei, H. Zhuzhang, J. Zhou, Z. Pan, W. Lin, Z. Yu, G. Zhang, X. Wang, *Angew. Chem. Int. Ed.* 2022, 61, e202113389.

[23] R. Chen, G. L. Zhuang, Z. Y. Wang, Y. J. Gao, Z. Li, C. Wang, Y. Zhou, M. H. Du, S. Zeng, L. S.

Long, X. J. Kong, L. S. Zheng, Natl. Sci. Rev. 2021, 8, nwaa234.

[24] Q. Zhang, X. Chen, Z. Yang, T. Yu, L. Liu, J. Ye, ACS Appl. Mater. Interfaces 2022, 14, 3970.