Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

In-situ prepared "polymer-in-salt" electrolytes enabling high-voltage lithium metal battery

Mengjun Sun ^{a,b}, Ziqi Zeng ^{a,*}, Wei Zhong ^{a,b}, Zhilong Han ^{a,c}, Linfeng Peng ^{a,c}, Chuang Yu ^a, Shijie Cheng ^a, Jia Xie ^{a,*}

- ^a State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- ^b State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- ^c School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

* Corresponding authors.

E-mail address: xiejia@hust.edu.cn (J. Xie), ziqizeng@hust.edu.cn (Z. Zeng).

2.1 Materials

 ε -Caprolactone (ε -CL, 99%), DL-Lactide (LA, 98%), stannous octoate (Sn (Oct)₂, 95%) and were purchased from Aladdin. Lithium bis(trifluoromethanesulphonyl)imide (LiTFSI, 99%) and lithium difluoro oxalate borate (LiDFOB) were purchased from Capchem and Do-Fluoride New Materials Co., Ltd.. A number of activated molecular sieve were used to remove the trace amounts of water of ε -CL and Sn (Oct)₂. Polyethylene separator about 8 µm was provided by Changzhou Senior New Energy Materials Co., Ltd. and the detailed information of the separator are shown in Table S4.

2.3 Materials characterization

A Fourier-transform infrared spectra FTIR test was conducted on a Bruker Vertex 70 spectrometer (the frequency range is 400 – 4000 cm⁻¹). The ¹H nuclear magnetic resonance (NMR) spectrum were obtained using a Bruker 400 MHz spectrometer. CL, LA and the obtained PEs were dissolved in CDCl₃ for ¹H NMR testing. All samples were prepared in glove box. The morphologies of Li foil were investigated by a scanning electron microscope (SEM, Nova NanoSEM 450, FEI). X-ray photoelectron spectroscopy (XPS) was performed using an AXIS-ULTRA DLD-600W (Shimadzu-Kratos Co., Ltd.). Alternating-current impedances (AC) impedances, cyclic voltammetry (CV) and linear sweep voltammetry (LSV) tests are implemented by CHI660E electrochemical workstation *(Chenhua, Shanghai, China)*.

Supplementary Figures:

Fig. S1 The ionic conductivity of PCL-based electrolytes with different mass ratio of CL and LA.

Fig. S2 Characterization of the *in-situ* PISE. ¹H NMR spectra of (a) PCA-PE and (b) PISE.

Fig. S3 (a) FTIR spectrum comparison of PCA-PE and PISE. (b-d) DSC profiles of PCA and PEs.

Fig. S4 Gel permeation chromatography (GPC) of PCA, PCA-PE and PISE.

Fig. S5 Electrochemical characteristics of *in-situ* PCLA-based electrolytes. EIS curves of (a) SS/*in-situ* PCLA-PE1/SS, (b) SS/*in-situ* PISE/SS symmetric cell at different temperature.

Fig. S6 (a) The temperature-dependent ionic conductance of PISE. (b) Cross-section SEM images of the PE separator after *in-situ* polymerization of ε -CL and LA.

Fig. S7 Chronoamperometry profile under a potential of 10 mV and the EIS spectra before and after the polarization test.

Fig. S8 XPS spectra of lithium surface of the cycled Li/Li symmetrical battery with in-

situ (a) PISE and (b) PCA-PE.

Fig. S9 Cycling stability of *ex-situ* Li/Li symmetrical cells based on PISE at 30 °C.

Fig. S10 Li plating/stripping overpotential profiles in the (a) Li/PISE/Li cell and (b) Li/PCA-PE/Li cell at step-increased current densities.

Fig. S11 (a) Charge/discharge profiles for *in-situ* NCM622/PISE/Li cells at different current density. (b) Galvanostatic charge/discharge profiles for *in-situ* NCM622/PISE/Li cells at 0.3 C.

Fig. S12 Cycling performances of the NCM622/Li cells based on PCA-PE with the voltage range of 3.0–4.3 V.

Fig. S13 Resistances of NCM811/in-situ PISE/Li cell after cycling at 30 °C.

Fig. S14 Cycling performances of the NCM622/*ex-situ* PISE/Li cells at 0.2 C in the voltage range of 3.0–4.3 V.

Fig. S15 TEM images of NCM622 after cycling test in PISE.

Fig. S16 XPS spectra of lithium surface of the cycled NCM622/Li battery with *in-situ* PISE.

Supplementary Tables

	Concentration of	Concentration of	Mass ratio of
	LiTFSI (mol L ⁻¹)	LiDFOB (mol L ⁻¹)	Sn (Oct) ₂
PCL	0	0	
РСА	0	0	
PCL-PE	1	0.3	10 wt%
РСА-РЕ	1	0.3	
PISE	3.0	0.3	

 Table S1 Composition of the different polymer electrolytes

Table S2 The solubility of LiTFSI in the solution with different mass ratio of CL andLA.

$rac{m_{CL}}{m_{LA}}$		10:0	9.5:0.5	9:1	8:2	7.5:2.5
Lithim concentration	1 M LiTFSI	R	R	R	R	
	2 M LiTFSI	R	R	Ð	R	ۍ لک
	3 M LiTFSI	R	R	Postoria (PISE)	Ð	ħ
	3.3 M LiTFSI	P	ł	þ	þ	ħ

Table S3 Melting enthalpy, crystallinity and melting point of the different polymer

electrolytes.

Composition	$\Delta H_m (J/g)$	Crystallinity (%)	T _m (°C)	T _g (°C)
РСА	33.4	24.9	45.8	-60 (Ref. 1)
PCA-PE	4.53	3.4	40.6	-62
PISE	Amorphous			-72.2

Table S4 GPC test results of PEVC-PE with different concentration of lithium salt.

	M _n	$\mathbf{M}_{\mathbf{w}}$	PDI
РСА	45642	84591	1.85
PCA-PE	29223	58244	1.99
PISE	10337	17022	1.64

Table S5 The detailed information of the separator.

Product type	SW507E		
Items	unit	Test data	
Thickness	μm	7.4	
Basis weight	g/m ²	4.1	
Permeability	s/100 mL	115	
Porosity	%	42.3	
Puncture strength	gf	376.9	
Tensile strength/MD	V of low?	2443	
Tensile strength/TD	Kgi/cm ²	2575	
Heat shrinkage/MD (120 °C/1 h)	%	5.0	
Heat shrinkage/TD (120 °C/1 h)	%	4.9	

Reference

[1] B. Zhang, Y. Liu, J. Liu, L. Liu, L. Sun, L. Cong, F. Fu, A. Mauger, C.M. Julien,
H. Xie, X. Pan, "Polymer-in-ceramic" based poly(ε-caprolactone)/ceramic composite electrolyte for all-solid-state batteries, J. Energy Chem. 2021, 52, 318. https://doi.org/10.1016/j.jechem.2020.04.025.