Supporting Information

Hierarchical Integrated 3D Hollow MnS@MoS₂ Microcube *via* Template-Controlled Synthesis for Asymmetric Supercapacitors

Qiannan Zhou, §ab Wei Li, §b Huizhong Xu, a Mengyou Gao, C Xiaochen Dong, d and Jianjian Lin*a

^a Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

^b Engineering Research Center of High Performance Polymer and Molding Technology, Qingdao University of Science and Technology, Qingdao 266042, China.

^c College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

^d Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China.

*Corresponding author. E-mail: Jianjian_Lin@qust.edu.cn

Figure S1. (a, b) SEM and TEM images of MnCO₃. (c, d) TEM image and XRD pattern of hollow MnO₂.

Figure S2. The XRD pattern of (a) MnCO₃ and (b) MnCO₃@MnO₂.

The peak at 23° and 33° in the XRD patterns (Figure S2b) are matched to the (110) and (211) crystal planes of MnCO₃ (JCPDS 99-0089), which confirmed the existence of intermediates. This XRD pattern (Figure S2) indicated the MnCO₃ transformed into the MnCO₃@MnO₂ after the calcination and the as-synthesized composite was the basis of H^+ etching into hollow-cube through.

Figure S3. The SEM and TEM images of $MnS@MoS_2$.

As shown in Figure 1d and Figure S3c, the TEM images of $MnS@MoS_2$ proved the existence of hollow structure. The hollow MnS microcube was wrapped by the MoS_2 nanosheets. Besides, the structural features of MoS_2 nanosheets can be seen from the enlarged TEM image of edges (Figure S3d).

Figure S4. The N₂ ab-/desorption isotherm curves of (a) $MnCO_3$, (b) MnO_2 and (c) $MnS@MoS_2$ composite.

Figure S5. (a) TEM images of edge MoS_2 . (b) Enlarged TEM image of a.

Figure S6. (a, b) SEM and TEM images of pure MoS₂.

Figure S7. EDS mapping of C elements.

Figure S8. The high-resolution Mo XPS spectra of MoS_2 .

Figure S9. The XRD pattern of $MnS@MoS_2$ after electrochemical test.

Figure S10. The SEM images of MnS@MoS₂ after electrochemical test.

Figure S11. (a) CV curves of MoS_2 at various scan rates. (b) GCD curves of MoS_2 at various current densities. (c) CV curves of MnS at various scan rates. (d) GCD curves of MoS_2 at various current densities.

Figure S12. The capacitive contributions of MnS@MoS₂ at 5-30 mV s⁻¹.

The contribution of different charge storage mechanism can be further characterized by the data at the scan rates of $5-30 \text{ mV s}^{-1}$. The contribution of surface capacitive process increased with the scan rates increasing.

Figure S13. (a) CV curves of the GR at 5–100 mV s⁻¹. (b) CV curves collected for GR and MnS@MoS₂ electrodes at a scan rate of 50 mV s⁻¹.

Figure S14. (a) CV curves of the MnS@MoS $_2$ //GR at various potential windows of 20 mV s⁻¹. (b) EIS of Mn@MoS $_2$ //GR device.

Electrode material	Energy density	Power density
Ni-Co-S@MnS	20.5	2000
MnO ₂ @ppy	23	1800
MnS microfiber	42.7	1200
MnS nanocrystal	24.9	5946
This work	65/29	1600/6400

Table S1 Comparison with previous reported asymmetric supercapacitors device