Supporting Information for

Atomically Ordered Pt₃Mn Intermetallic Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells

Jeonghoon Lim^{1, †, ‡}, Chanwon Jung^{1, †, §}, Doosun Hong¹, Junu Bak¹, Jaewook Shin¹, MinJoong Kim^{1,2}, DongHoon Song¹, Changsoo Lee^{1,2}, Jinkyu Lim³, Hyunjoo Lee³, Hyuck Mo Lee¹, and EunAe Cho^{1,*}

¹Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea

²Hydrogen Research Department, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea

³Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.

†J. Lim and C. Jung contributed equally to this work.

[‡] Current address: George W.Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

§ Current address: Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf 40237, Germany

* Corresponding Author: eacho@kaist.ac.kr

Calculation of mass activity

The kinetic current (j_k) was calculated by using the Koutecky-Levich equation,¹ which is expressed by

$$j_{k} = \frac{j_{d} \times j}{|j_{d} - j|}, \ \frac{1}{j} = \frac{1}{j_{k}} + \frac{1}{j_{d}} = \frac{1}{j_{k}} + \frac{1}{0.62nF(D_{0_{2}})^{2/3}v^{-1/6}C_{0_{2}}\omega^{1/2}}$$

where *j* is the measured current density, j_d is the diffusion-limited current density, *n* is the number of electrons transferred, *F* is Faraday's constant (96,485 C mol⁻¹), D_{O2} is the diffusion coefficient of O₂ in 0.1 M HClO₄ solution (1.93 × 10⁻⁵ cm² s⁻¹), *v* is the kinematic viscosity of the electrolyte (1.01 × 10⁻² cm² s⁻¹), C_{O2} is the concentration of oxygen in 0.1 M HClO₄ solution (1.26 × 10⁻⁶ mol cm⁻³), and ω is the angular rate of the rotating disk electrode.

From calculated kinetic current, mass activity was calculated using below equation.

Mass activity = $\frac{j_k}{m_{pt}}$ where m_{Pt} is the total mass of Pt loaded on the electrode.

Calculation of electrochemically active surface area (ECSA)

ECSA was calculated by integration of the hydrogen adsorption region (Q_H) between 0.05 and 0.4 V_{RHE} using total mass of Pt loaded on the electrode (m_{Pt}) and 210 µC cm⁻² of monolayer hydrogen adsorption charge on platinum (q_H) as follows.²

$$ECSA = \frac{Q_H}{m_{Pt} \times q_H}$$

Calculation of specific activity

 $Specific \ activity = \frac{Mass \ activity}{ECSA}$

Fig. S1. TEM images of (a) commercial Pt/C, (b) Mn-Pt/C, and (c) Pt₃Mn intermetallic/C.

Fig. S2. Particle size distribution of (a) Pt/C, (b) Mn-Pt/C, and (c) Pt₃Mn intermetallic/C. Average particle sizes are 2.55, 3.16, and 4.23 nm for Pt/C, Mn-Pt/C, and Pt₃Mn intermetallic/C. For comparison, particle size distributions of Pt/C, Mn-Pt/C, and Pt₃Mn intermetallic/C are presented in (d).

Fig. S3. EDS mapping images of Mn-Pt/C. Mn (green) atoms are mostly observed on Pt (red) nanoparticles.

Fig. S4. XRD patterns of Mn-Pt/C annealed at 500, 600, 700, and 800 °C. With an increase in the annealing temperature, the XRD peaks from the Pt_3Mn intermetallic phase are intensified. Pt_3Mn intermetallic/C catalyst was annealed at 700 °C in this work.

Fig. S5. (a-d) STEM and EDS mapping images of Pt₃Mn intermetallic/C.

Fig. S6. HR-STEM images and their intensity profiles of Pt₃Mn intermetallic nanoparticles with [100] zone axis.

Fig. S7. Mn 2p XPS spectra of (a) Mn-Pt/C and (b) Pt₃Mn intermetallic/C. Pt 4f XPS spectra

of (c) Mn-Pt/C, (d) Pt₃Mn intermetallic/C, and (e) Pt/C.

Fig. S8. ORR polarization and CV curves of pristine Pt₃Mn intermetallic/C (700 °C), Mn-Pt/C, and commercial Pt/C catalysts.

Fig. S9. (a) TEM image of Mn-Pt/C annealed at 800 °C under Ar/H_2 reductive environment for 4 hours (Mn-Pt/C_800 °C). (b) Cyclic voltammograms and (c) ORR polarization curves of Mn-Pt/C_800 °C and Mn-Pt/C_700 °C (Pt₃Mn intermetallic/C). The values of ECSAs, mass activity, and specific activity are summarized in Table S3.

Fig S10. ORR polarization curves of Pt₃Mn intermetallic/C and commercial Pt/C catalysts before and after 10 k ADT potential cycling test in 0.1 M HClO₄ solution.

Fig. S11. STEM image of Pt₃Mn intermetallic nanoparticle after 10k cycles.

Fig. S12. Low magnification EDS mapping images of (a) Pt_3Mn intermetallic and (b) Mn-Pt/C after 10k cycles. Corresponding chemical compositions are summarized in Table S4.

	Mn Dt/C	Pt ₃ Mn intermetallic/C	Pt ₃ Mn intermetallic/C	
	WIII-FUC	(pristine)	(after RDE 10k cycles)	
Pt	75.2	75.1	74.7	
Mn	24.8	24.9	25.3	
Pt-to-Mn ratio	3.03	3.02	2.95	

Table S1. Chemical composition of Mn-Pt/C and Pt₃Mn intermetallic/C measured using ICP-OES (at%).

Table S2. Mass activity, ECSA, and specific activity of Pt₃Mn intermetallic/C, Mn-Pt/C, and commercial Pt/C. (RDE results)

	Mass activity	ECSA _{Hupd}	Specific activity		
	$[\mathrm{A} \mathrm{mg}_{\mathrm{Pt}}^{-1}]$	$[m^2 g_{Pt}^{-1}]$	[mA cm ⁻²]		
Pt ₃ Mn intermetallic/C	0.386	44	0.877		
Mn-Pt/C	0.014	30	0.047		
Commercial Pt/C	0.125	62	0.202		

Table S3. ECSA, mass activity (@ 0.9 V_{RHE}) and specific activity (0.9 V_{RHE}) of Mn-Pt/C annealed at 700 °C (Pt₃Mn intermetallic/C) and Mn-Pt/C annealed at 800 °C catalysts. (RDE results)

	ECSA _{Hupd}	Mass activity	Specific activity		
	$[m^2 g_{Pt}^{-1}]$	$[\mathrm{A}\ \mathrm{mg}_{\mathrm{Pt}}^{-1}]$	$[mA cm^{-2}]$		
Mn-Pt/C_700 °C	44	0.386	0.877		
Mn-Pt/C_800 °C	38.94	0.312	0.801		

Table S4. Chemical composition changes of Pt_3Mn intermetallic/C and Mn-Pt/C after 10k cycles.

Catalyst after 10k cycles	W	t%	at%		
(RDE)	Mn	Pt	Mn	Pt	
Pt ₃ Mn intermetallic/C	7.62	92.38	22.65	77.35	
Mn-Pt/C	0.81	99.19	2.83	97.17	

	Mn	Pt	
Blank	0.048	0.015	
Pt ₃ Mn intermetallic/C	38.757	0.650	
Mn-Pt/C	205.477	4.213	

Table S5. Concentrations of Pt and Mn in the electrolytes dissolved from Pt_3Mn intermetallic/C and Mn-Pt/C during 10k potential cycles. (ICP-MS, unit: ppb = μ g/L).

Table S6. Numbers of Pt atoms and Mn atoms in each sublayer of the slabs.

Lavan		Sla	Slab (1)		Slab (2)		Slab (3)		Slab (4)	
Layer		Pt	Mn	Pt	Mn	Pt	Mn	Pt	Mn	
Pt-skin		4	0	4	0	4	0	4	0	
	1st	4	0	3	1	2	2	1	3	
Sub-	2nd	2	2	3	1	4	0	4	0	
surface	3rd	3	1	3	1	3	1	4	0	
	4-5th	3	1	3	1	3	1	3	1	

	Operating Condition		Loading	Voltage	Current	Power Density	
Catalyst	Gas	Back pressure	$\frac{C/A}{(mg_{Pt} cm^{-2})}$	(V)	Density (mA cm ⁻²)	(W cm ⁻²)	Ref.
Pt ₃ Mn intermetallic/C	H ₂ -Air (1.5:2.0)	No backpressure	0.15 / 0.15	0.7	550	0.38	This work
fcc-PtFe/C	H ₂ -Air (1.5:8.0)	No backpressure	0.2 / 0.2	0.7	~300	~0.21	3
MOF-derived Pt ₃ Co	H ₂ -Air	1.5 bar _{abs}	0.13 / N/A	0.8	270	0.22	4
L1 ₀ -CoPt/Pt	H ₂ -Air (500/100 0 sccm)	1.5 bar _{abs}	0.105 / N/A	0.7	~700	0.49	5

 Table S7. Single-cell performance of representative Pt-based intermetallic ORR catalysts.

Computational Details

We performed DFT calculations using the Vienna Ab initio Simulation Package (VASP), in which a plane-wave basis set is employed.⁶⁻⁹ The kinetic energy cutoff was set to 500 eV to expand the plane wave. The generalized gradient approximation (GGA) was used to describe the exchange-correlational interactions with the Perdew-Burke-Ernzerhof (PBE) functional.¹⁰ The projector-augmented wave method was used to treat core and valence electrons.¹¹ To describe the oxygen reduction reaction on the intermetallic Pt₃Mn and Pt, we modeled the (111) surfaces of periodically repeated 2×2 supercells with 6 atomic layers and a vacuum width of 15 Å. Pt₃Mn (111) was modeled by a so-called Pt-skin structure, where the outermost layer of 6 atomic layers was composed of only platinum atoms and the two bottom-most layers were fixed for both Pt₃Mn and Pt. The Brillouin zone was sampled with a $4 \times 4 \times 1$ Monkhorst–Pack k-point mesh. The geometries were optimized until the Hellmann-Feynman forces were less than 10^{-2} eV/Å, and the electronic structures were relaxed with a convergence criterion of 10^{-5} eV. An implicit solvation model was implemented to describe the solvent effect by using VASPsol.¹²

In this study, the free energy changes of each step were calculated based on a computational hydrogen electrode model reported by Nørskov et al.¹³ Adding entropy term (T Δ S) and zeropoint energy (ZPE) corrections to the DFT-calculated energies, we could obtain the Gibbs free energy diagram as follows:

 $\Delta G = \Delta E_{DFT} + \Delta ZPE - T\Delta S - neU,$

where ΔE_{DFT} is the change in the total energy calculated by DFT method; ΔZPE is the difference in zero-point energy; ΔS is the change in entropy; T is temperature, which was set

to the room temperature (298.15K); n is the number of electrons involved in each ORR reaction step; and U is the electrode potential.

The dissolution potential of Pt atoms was calculated as

$$U_{dissolution} = U_{dissolution+}^{Bulk Pt} \frac{1}{2n_{dissolved}} \left\{ E(Pt_{n-n_{dissolved}}M_m) + n_{dissolved}E(Pt_{bulk}) - E(Pt_nM_m) \right\},$$

where $U_{dissolution}$ and $U_{dissolution}^{Bulk Pt}$ are the dissolution potentials of a surface and bulk Pt into Pt²⁺.

Here, we calculated $U_{dissolution}^{Bulk Pt}$ as 1.188 V, and $n_{dissolved}$ is defined as the number of Pt atoms dissolved.

REFERENCES

- 1 G. Zhang, C. Li, J. Liu, L. Zhou, R. Liu, X. Han, H. Huang, H. Hu, Y. Liu and Z. Kang, *J. Mater. Chem. A*, 2014, **2**, 8184–8189.
- 2 C. Yao, F. Li, X. Li and D. Xia, J. Mater. Chem., 2012, 22, 16560–16565.
- 3 D. Y. Chung, S. W. Jun, G. Yoon, S. G. Kwon, D. Y. Shin, P. Seo, J. M. Yoo, H. Shin, Y.-H. Chung, H. Kim, B. S. Mun, K.-S. Lee, N.-S. Lee, S. J. Yoo, D.-H. Lim, K. Kang, Y.-E. Sung and T. Hyeon, *J. Am. Chem. Soc.*, 2015, **137**, 15478–15485.
- 4 X. X. Wang, S. Hwang, Y.-T. Pan, K. Chen, Y. He, S. Karakalos, H. Zhang, J. S. Spendelow, D. Su and G. Wu, *Nano Lett.*, 2018, **18**, 4163–4171.
- 5 J. Li, S. Sharma, X. Liu, Y.-T. Pan, J. S. Spendelow, M. Chi, Y. Jia, P. Zhang, D. A. Cullen and Z. Xi, *Joule*, 2019, **3**, 124–135.
- 6 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.
- 7 G. Kern, G. Kresse and J. Hafner, *Phys. Rev. B*, 1999, **59**, 8551.
- 8 G. Kresse and J. Furthmüller, *Comput. Mater. Sci.*, 1996, **6**, 15–50.
- 9 G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, **48**, 13115–13118.
- 10 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 11 P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953–17979.
- 12 K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias and R. G. Hennig, J. Chem. Phys., 2014, **140**, 84106.
- 13 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, *J. Phys. Chem. B*, 2004, **108**, 17886–17892.