Constructing Nickel Sulfide Heterojunction by W-doping-induced

Structural Transition for Enhanced Oxygen Evolution

Ziqian Xue,⁺ Yawen Liu, ⁺ Qinglin Liu, Yawei Zhang, Meng Yu, Qianwei Liang,

Jianqiang Hu* and Guangqin Li*

Dr. Z. Xue, Q. Liu, Y. Zhang, Prof. G. Li MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou, 510275, P. R. China E-mail: liguangqin@mail.sysu.edu.cn

Y. Liu, Dr. Y. Meng, Dr. Q. Liang, Prof. J. Hu College of Chemistry and Chemical Engineering South China University of Technology Guangzhou, 510640, P. R. China E-mail: jqhusc@scut.edu.cn

1. Experimental Section

1.1 Chemicals

Thioacetamide (TAA, CH₃CSNH₂, AR, 99%), sodium tungstate dihydrate (Na₂WO₄·2H₂O, ACS, 99.0-101.0%), Nickel(II) acetylacetonate (C₁₀H₁₄NiO₄·2H₂O, AR, 99%), Thiourea (CH₄N₂S, AR, 99%), PVP (Polyvinylpyrrolidone, K30), Monoethanolamine (C₂H₇NO, AR), Diethanolamine (C₄H₁₁NO₂, AR), KOH and commercial RuO₂ were purchased from Aladdin (Shanghai, China).

1.2 Synthesis of W-Ni₃S₂/Ni₇S₆.

The W-Ni₃S₂/Ni₇S₆ nanorod array was synthesized by a simple hydrothermal method. Firstly, 250 mg thioacetamide (TAA, CH₃CSNH₂), 1.5 mmol sodium tungstate dihydrate (Na₂WO₄·2H₂O) and 40 mg PVP were dissolved in 60 mL deionized water, continuous stirring for 20 min. Meanwhile, a piece of Ni foam (2×3 cm²) was cleaned by ultrasonic treatment with 3 M HCl solution, ethanol, and deionized water for 20 min each. Secondly, Ni foam was immersed into the prepared

solution and heating the solution at 160° C for 12 h in a sealed autoclave. Finally, the hydrothermal product was washed with deionized water and dried in air to obtain the W-Ni₃S₂/Ni₇S₆ nanorod arrays catalyst. The loading weights of W-Ni₃S₂/Ni₇S₆ on Ni foam were approximately 2.5 mg·cm⁻¹.

1.3 Synthesis of W-Ni₃S₂.

For preparing the W-Ni₃S₂ nanorod arrays, 250 mg thioacetamide (TAA, CH₃CSNH₂), 35 mg sodium tungstate dihydrate (Na₂WO₄·2H₂O) and 40 mg PVP were dissolved in 60 mL deionized water, continuous stirring for 20 min. Meanwhile, a piece of Ni foam (2×3 cm²) was cleaned by ultrasonic treatment with 3 M HCl solution, ethanol, and deionized water for 20 minutes each. Then, Ni foam was immersed into the prepared solution and heating the solution at 160°C for 12 h in a sealed autoclave. Finally, the hydrothermal product was washed with deionized water and dried in air to obtain the W-Ni₃S₂ nanorod arrays. The loading weights of The W-Ni₃S₂ on Ni foam were approximately 2.3 mg·cm⁻¹.

1.4 Synthesis of Ni₃S₂

For preparing the Ni₃S₂, 250 mg thioacetamide (TAA, CH₃CSNH₂) and 40 mg PVP were dissolved in 60 mL deionized water, continuous stirring for 20 min. Meanwhile, a piece of Ni foam (2×3 cm²) was cleaned by ultrasonic treatment with 3 M HCl solution, ethanol, and deionized water for 20 minutes each. Then, Ni foam was immersed into the prepared solution and heating the solution at 160°C for 12 h in a sealed autoclave. Finally, the hydrothermal product was washed with deionized water and dried in air to obtain the Ni₃S₂ catalyst supported on Ni foam. The loading weights of Ni₃S₂ on Ni foam were approximately 2.2 mg·cm⁻¹.

1.5 Synthesis of Ni₇S₆

For preparing the Ni₇S₆, 0.0617 g nickel (ii) acetylacetonate, 0.0213 g thiourea, and 100 mg PVP were dispersed in the mixture of H₂O (2.0 mL), ethanolamine (6.0 mL), and diethanolamine (2.0 mL). The above mixtures were stirred for 60 minutes and heating the solution at 160°C for 12 h in a sealed autoclave. The loading amount of Ni_7S_6 catalyst on the Ni foam is about 2.5 mg·cm⁻², which is the same loading mass with our catalyst.

1.6 Preparation of RuO₂ supported on Ni foam.

The RuO₂ supported on Ni foam was prepared with the help of Nafion (5%) solution. The commercial RuO₂ (10 mg) was dispersed into a mixture of 980 μ L ethanol and 20 μ L Nafion solution. Then, the mixture was ultrasonicated for 30 min to obtain a homogeneous dispersion. Finally, the dispersed solution was loaded onto nickel foam, followed by the dry in air at room temperature. The loading amount of RuO₂ catalyst on the Ni foam is about 2.5 mg·cm⁻², which is the same loading mass with our catalyst.

1.7 Material characterizations

Characterization X-ray diffraction patterns were performed on the Rigaku SmartLab diffractometer with Cu K α X-ray source (λ =1.540598 Å). The fieldemission scanning electron microscopy (FE-SEM) images were recorded on a Hitachi SU8010 system. Transmission electron microscopy (TEM) images were collected by a JEM-1400Plus transmission electron microscopy. Scanning transmission electron microscopy (STEM) and EDS mapping images were measured on a JEOL JEM-ARM 200F equipped with an energy dispersive X-ray spectrometer, operating at 200 kV. Xray photoelectron spectra (XPS) tests were carried out on a VG Scientific ESCALAB 250 instrument.

1.8 Electrochemical measurements

The electrochemical tests were conducted on the CHI 760E via a general threeelectrode system in 1 M KOH electrolyte at room temperature. For detail, platinum plate electrode as the counter electrode and Ag/AgCl (KCl saturated) electrode as the reference electrode. Linear sweep voltammetry (LSV) curves were measured at a scan rate of 2 mV·s⁻¹. The obtained potential in the LSV polarization curves was corrected for 95% iR losses to minimize the influence of ohmic resistance. The measured potentials versus the reversible hydrogen electrode (RHE) were converted according to the Nernst equation ($E_{RHE}=E_{Ag/AgCl} + 0.197 + 0.059 \times pH$)^[1]. The double-layer capacitance (C_{dl}) at different scanning rates was measured by cyclic voltammetry (CV) within a potential range of 1.036-1.136 V vs. RHE to investigate the electrochemical active surface area (ECSA). Electrochemical impedance spectra (EIS) were measured with 5 mV amplitude in the frequency of 0.1 Hz ~100 kHz at 1.55 V vs. RHE. The turnover frequency (TOF) was calculated by the equation: $TOF = (J \times A) / (4 \times F \times m)$, where J is the current density (A cm⁻²) at an overpotential of 300 mV, A and m represent the area of the electrode and the number of moles of the active materials, F represents Faraday constant (96,485 C mol⁻¹).

2. Supplementary figures

Figure S1. SEM images of Ni_3S_2 .

Figure S2. SEM images of Ni₇S₆.

Figure S3. SEM images of W-Ni₃S₂.

Figure S4. SEM images of W-Ni $_3S_2$ /Ni $_7S_6$.

Figure S5. a) FESEM, b) TEM, c) HRTEM images of the Ni_3S_2 . d–g) HAADF-STEM image and STEM-EDS mappings of Ni_3S_2 .

aatalwat	Ma	ss%	Atom%		
catalyst	Ni	W	Ni	W	
Ni ₃ S ₂	100.00	0	100	0	
W- Ni_3S_2	99.32	0.68	99.78	0.22	
W- Ni_3S_2/Ni_7S_6	87.62	12.38	95.68	4.32	

Table S1. The molar ratio of Ni/W in different catalysts

Figure S6. Energy dispersive X-ray (EDX) spectrum of W-Ni₃S₂/Ni₇S₆.

Figure S7. XRD of Ni_3S_2 , W- Ni_3S_2 and W- Ni_3S_2/Ni_7S_6 .

Figure S8. XRD of Ni₇S₆.

catalyst	Electrolyte	Overpotential Tafel slope (mV) (mV dec ⁻¹)		Substrates	Reference
W-Ni ₃ S ₂ /Ni ₇ S ₆	1.0 M KOH	$\eta_{100}=202$ $\eta_{200}=285$	27.9	Ni foam	This work
Ni_3S_2	1.0 M KOH	$\eta_{10}=324$	72.1	Ni foam	[2]
Fe _{0.9} Ni _{2.1} S ₂ @NF	1.0 M KOH	$\eta_{100} = 252$	64	Ni foam	[3]
CoMoNiS-NF-31	1.0 M KOH	$\eta_{100}=260$	85	Ni foam	[4]
Mo-Ni ₃ S ₂ /Ni _x S _y /NF	1.0 M KOH	η ₅₀ =238	60.6	Ni foam	[5]
3D Se-(NiCo)S _x (OH) _x	1.0 M KOH	$\eta_{10} = 155$	33.9	Ni foam	[6]
Ni ₃ S ₂ NTFs	1.0 M NaOH	$\eta_{100}=330$	101.2	Ni foil	[7]
CoMoS ₄ /Ni ₃ S ₂	1.0 M KOH	$\eta_{10}=200$	63	-	[8]
		η ₁₀ =218			
FeMOFs-SO ₃	1.0 M KOH	$\eta_{500}=298$	36.2	-	[9]
		$\eta_{1000}=330$			
$(Co_{0.85}Fe_{0.15})_9S_8$	1.0 M KOH	η ₁₀ =255	49	-	[10]
Ni ₃ S ₂ @Co(OH) ₂	1.0 M KOH	$\eta_{10}=290$	90.7	Ni foam	[11]
$Ni_3S_2@graphite foam$	1.0 M KOH	$\eta_{10}=240$	62.4	Ni foam	[12]
Co_9S_8 -Ni $_3S_2$ nanoarrays	1.0 M KOH	$\eta_{100}=346$	79.3	Ni foam	[13]
		η ₂₀ =294		Ni foam	[14]
N13S2-C09S8	1.0 M KOH	η ₅₀ =320	80		
nanowires		$\eta_{100} = 350$			
Co_9S_8 -Ni $_3S_2$ nanotubes	1.0 M KOH	η ₅₀ =281	53.3	Ni foam	[15]
Ni_3S_2/Co_9S_8	1.0 M KOH	$\eta_{100}=340$	66	Ni foam	[16]
SnS-Ni ₃ S ₂ /NF	1.0 M KOH	$\eta_{100}=387$	126	Ni foam	[17]
NiCo-LDH/NiCo ₂ S ₄ /CC	1.0 M KOH	$\eta_{100}=254$	48	CC	[18]

Table S2	. Comparisons of OER	activity of art non-noble	e-metal electrocatalysts.

Ni ₃ S ₂ /FeS	1.0 M KOH	$\eta_{30}=295$	79.8	-	[19]
$C_{2}058/C_{W}25/CE$		$\eta_{10}\!\!=\!\!195$	70 0	Cu foom	[20]
C0938/Cu23/Cr	1.0 М КОП	η ₅₀ =255	/0.0	Cu Ioani	[-*]
Fe,Mn-Ni ₃ S ₂ /NF	1.0 M KOH	η ₃₀ =216	63.29	Ni foam	[21]
Ni ₃ S ₂ @MIL-53		m -226	14.9	Ni foom	[22]
(NiFeCo)	1.0 M KOH	1150-250	14.0	INI IOdili	[]
Ni ₃ S ₂ -CeO ₂	1.0 M KOH	η ₂₀ =264	146	Ni foam	[23]
NiO- Ni ₃ S ₂	1.0 M KOH	$\eta_{20}\!\!=\!\!290$	75	Ni foam	[24]
Ni ₃ S ₂ /NiS hollow core	1.0 M KOH	$\eta_{10}\!\!=\!\!298$	58.6	-	[25]
MoS ₂ /NiS	1.0 M KOH	$\eta_{10}\!\!=\!\!350$	108	-	[26]
NiS/Bi ₂ WO ₆	1.0 M KOH	$\eta_{10}\!\!=\!\!527$	238	-	[27]
Ni ₃ S ₂ /Ni@CC	1.0 M KOH	$\eta_{10}\!\!=\!\!290.9$	101.26	CC	[28]
$FeNi_3N-Ni_3S_2$	1.0 M KOH	$\eta_{10}\!\!=\!\!230$	38	-	[29]
N- Ni_3S_2/VS_2	1.0 M KOH	$\eta_{10}\!\!=\!\!227$	60	-	[30]
Ni- Ni ₃ S ₂ @carbon	1.0 M KOH	$\eta_{10}\!\!=\!\!284$	56	-	[31]
Co/Ce- Ni ₃ S ₂	1.0 M KOH	η ₂₀ =286	71.7	Ni foam	[32]
Ni S /MIL 52(Fe)	10 M KOH	$\eta_{10}=214$	22.8		[33]
11352/111L-55(1 ⁻ C)	1.0 M KOH	$\eta_{100}=251$	55.8	-	[]
CoSe/NieSe/CoNiO	1 0 M KOH	$\eta_{10}=256$	13.1		[34]
$\cos_2/\sin_3 \sin_2/\cos_3 \sin_3$	1.0 W KOH	$\eta_{100}=300$	ד.נד	-	
Fe _{7.2%} - Ni ₃ S ₂ NSs	1.0 M KOH	$\eta_{10}\!\!=\!\!295$	71	Ni foam	[35]
S- Ni-S-	1 0 M KOH	η ₁₀ =213	45	_	[36]
0 11302	1.0 IVI IXOII	$\eta_{100}=286$	J.		
NiFe-Co ₉ S ₈	1.0 M KOH	$\eta_{10}=219$	55	CC	[37]
NiS/NiS ₂	1.0 M KOH	η ₁₀₀ =416	156.5	-	[38]

1	Solution series resistances R _s	Charge transfer resistance R _{ct}		
cataryst	(Ω)	(Ω)		
Ni ₃ S ₂	1.972	5.709		
Ni ₇ S ₆	1.957	6.282		
W-Ni ₃ S ₂	1.892	1.498		
W-Ni ₃ S ₂ /Ni ₇ S ₆	1.988	0.7334		

Table S3. EIS results of W-Ni₃S₂/Ni₇S₆, W-Ni₃S₂, Ni₃S₂, Ni₇S₆ and NF.

Figure S9. CV plots of a) Ni_3S_2 , b) W- Ni_3S_2 , c) Ni_7S_6 , d) W- Ni_3S_2/Ni_7S_6 at different scan rates.

Figure S10. Capacitive currents as a function of the scan rate to give the double-layer capacitance (C_{dl}) for different catalysts.

Figure S11. The OER performance of Ni_3S_2 , W- Ni_3S_2 and W- Ni_3S_2/Ni_7S_6 after the electrochemical surface area normalization.

Figure S12. TOF of different electrocatalysts at an overpotential of 300 mV.

Figure S13. XRD patterns of W-Ni₃S₂/Ni₇S₆ before and after stability test.

Figure S14. SEM images of W-Ni₃S₂/Ni₇S₆ a) before and b) after stability test.

Figure S15. a) TEM images b) HRTEM images c–f) HAADF-STEM images of the W-Ni $_3S_2$ /Ni $_7S_6$ after stability test.

Figure S16. OER performances of W-Ni $_3S_2/Ni_7S_6$ before and after stability test in 1.0 M KOH.

Figure S17. a) W 4f XPS spectra, b) Ni 2p XPS spectra, c) S 2p XPS spectra, d) O 1s XPS spectra of W-Ni₃S_{2.}

Figure S18. O 1s XPS spectra of Ni_3S_2 , Ni_7S_6 and W- Ni_3S_2/Ni_7S_6 .

Figure S19. a) W 4f XPS spectra, b) Ni 2p XPS spectra, c) S 2p XPS spectra, d) O 1s XPS spectra of W-Ni₃S₂/Ni₇S₆ before and after stability test in 1.0 M KOH.

Z. Xue, Y. Li, Y. Zhang, W. Geng, B. Jia, J. Tang, S. Bao, H. Wang, Y. Fan, Z. Wei, Z. Zhang, Z. Ke, G. Li, C. Su, *Advanced Energy Materials*. 2018, 8, 1801564.

[2] G. Ren, Q. Hao, J. Mao, L. Liang, H. Liu, C. Liu, J. Zhang, Nanoscale. 2018, 10, 17347.

[3] B. Fei, Z. Chen, J. Liu, H. Xu, X. Yan, H. Qing, M. Chen, R. Wu, *Advanced Energy Materials*. **2020**, 10, 2001963.

[4] Y. Yang, H. Yao, Z. Yu, S. M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol, M. G. Kanatzidis, *Journal of the American Chemical Society*. 2019, 141, 10417.

[5] X. Luo, P. Ji, P. Wang, R. Cheng, D. Chen, C. Lin, J. Zhang, J. He, Z. Shi, N. Li, S. Xiao, S. Mu, *Advanced Energy Materials*. **2020**, 10, 1903891.

[6] C. Hu, L. Zhang, Z. Zhao, A. Li, X. Chang, J. Gong, Advanced Materials. 2018, 30, 1705538.

[7] J. Dong, F. Zhang, Y. Yang, Y. Zhang, H. He, X. Huang, X. Fan, X. Zhang, *Applied Catalysis B: Environmental.* **2019**, 243, 693.

[8] P. Hua, Z. Jia, H. Che, W. Zhou, N. Liu, F. Li, J. Wang, Journal of Power Sources. 2019, 416, 95.

[9] K. Feng, D. Zhang, F. Liu, H. Li, J. Xu, Y. Xia, Y. Li, H. Lin, S. Wang, M. Shao, Z. Kang, J. Zhong, Advanced Energy Materials. 2020, 10, 2000184.

[10] Z. Wang, Z. Lin, J. Deng, S. Shen, F. Meng, J. Zhang, Q. Zhang, W. Zhong, L. Gu, Advanced Energy Materials. 2021, 11, 2003023.

[11] X. Du, P. Che, Y. Wang, C. Yuan, X. Zhang, *International Journal of Hydrogen Energy*. 2019, 44, 22955.

[12] B. Ma, X. Guo, X. Zhang, Y. Chen, X. Fan, Y. Li, F. Zhang, G. Zhang, W. Peng, *Energy Technology*. 2019, 7, 1900063.

[13] Y. Zhou, S. Xi, X. Yang, H. Wu, Journal of Solid State Chemistry. 2019, 270, 398.

[14] R. Zhang, L. Cheng, Z. Wang, F. Kong, Y. Tsegazab, W. Lv, W. Wang, *Applied Surface Science*. 2020, 526, 146753.

[15] J. Li, P. Xu, R. Zhou, R. Li, L. Qiu, S. P. Jiang, D. Yuan, *Electrochimica Acta*. 2019, 299, 152.

[16] J. Lin, H. Wang, X. Zheng, Y. Du, C. Zhao, J. Qi, J. Cao, W. Fei, J. Feng, *Journal of Power Sources*. **2018**, 401, 329.

[17] X. Zang, J. Teng, X. Zhang, J. Guo, Materials Letters. 2021, 287, 129290.

[18] Y. Liu, Y. Bai, W. Yang, J. Ma, K. Sun, Electrochimica Acta. 2021, 367, 137534.

[19] K. Xiao, J. Wei, W. Han, Z. Li, Journal of Power Sources. 2021, 487, 229408.

[20] Z. Zang, X. Wang, X. Li, Q. Zhao, L. Li, X. Yang, X. Yu, X. Zhang, Z. Lu, ACS Appl Mater Interfaces. 2021, 13, 9865.

[21] J. Duan, Z. Han, R. Zhang, J. Feng, L. Zhang, Q. Zhang, A. Wang, *J Colloid Interface Sci.* 2021, 588, 248.

[22] B. Yuan, C. Li, L. Guan, K. Li, Y. Lin, Journal of Power Sources. 2020, 451, 2003023.

[23] Q. Wu, Q. Gao, L. Sun, H. Guo, X. Tai, D. Li, L. Liu, C. Ling, X. Sun, *Chinese Journal of Catalysis*. 2021, 42, 482.

[24] L. Peng, J. Shen, X. Zheng, R. Xiang, M. Deng, Z. Mao, Z. Feng, L. Zhang, L. Li, Z. Wei, *Journal of Catalysis*. 2019, 369, 345.

[25] J. Wang, H. C. Zeng, ACS Applied Materials & Interfaces. 2019, 11, 23180.

[26] Q. Qin, L. Chen, T. Wei, X. Liu, Small. 2019, 15, 1803639.

[27] J. Li, X. Xu, B. Zhang, W. Hou, S. Lv, Y. Shi, Applied Surface Science. 2020, 526, 146718.

[28] H. Qian, B. Wu, Z. Nie, T. Liu, P. Liu, H. He, J. Wu, Z. Chen, S. Chen, *Chemical Engineering Journal*. 2020, 420, 127646.

[29] S. Liang, M. Jing, E. Pervaiz, H. Guo, T. Thomas, W. Song, J. Xu, A. Saad, J. Wang, H. Shen, J. Liu, M. Yang, *ACS Applied Materials & Interfaces*. **2020**, 12, 41464.

[30] X. Zhong, J. Tang, J. Wang, M. Shao, J. Chai, S. Wang, M. Yang, Y. Yang, N. Wang, S. Wang, B. Xu, H. Pan, *Electrochimica Acta*. 2018, 269, 55.

[31] Y. Lin, G. Chen, H. Wan, F. Chen, X. Liu, R. Ma, Small. 2019, 15, 1900348.

[32] X. Wu, T. Zhang, J. Wei, P. Feng, X. Yan, Y. Tang, Nano Research. 2020, 13, 2130.

[33] F. Wu, X. Guo, Q. Wang, S. Lu, J. Wang, Y. Hu, G. Hao, Q. Li, M.-Q. Yang, W. Jiang, *Journal of Materials Chemistry A*. 2020, 8, 14574.

[34] H. Lee, X. Wu, Q. Ye, X. Wu, X. Wang, Y. Zhao, L. Sun, *Chemical Communications*. 2019, 55, 1564.

[35] Y. Zhu, H. Yang, K. Lan, K. Iqbal, Y. Liu, P. Ma, Z. Zhao, S. Luo, Y. Luo, J. Ma, *Nanoscale*. **2019**, 11, 2355.

[36] H. Zhang, H. Jiang, Y. Hu, Y. Li, Q. Xu, S. Petr, C. Li, *Journal of Materials Chemistry A*. 2019, 7, 7548.

[37] C. Zhan, Z. Liu, Y. Zhou, M. Guo, X. Zhang, J. Tu, L. Ding, Y. Cao, Nanoscale. 2019, 11, 3378.

[38] Q. Li, D. Wang, C. Han, X. Ma, Q. Lu, Z. Xing, X. Yang, *Journal of Materials Chemistry A*. 2018, 6, 8233.