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Experimental Section

Materials: Phosphonitrilic chloride trimer (N3P3Cl6, 98%), 4,4'-Sulfonyldiphenol 

(C12H10O4S, 98%), Tetraethyl orthosilicate (C8H20O4Si, 98%), Triethylamine (C6H15N, 99%), 

Ammonium hydroxide (NH3(aq), 25%-28%), Methanol (CH4O, 99.5%), Ethanol absolute 

(C2H6O, 99.7%). All chemicals were used as received without further purification. 

Synthesis of SiO2 spheres: Typically, 10 ml deionized water and 3 ml NH3·H2O were added 

in 75 ml ethanol absolute under stirring 10 min to get homogeneous solution. Afterward, 6 ml 

tetraethyl orthosilicate was added in the solution and reacted at 35℃ for 3 hours. The 

synthesized product was obtained by centrifugation, and then washed with deionized water 

and ethanol three times successively, and dried under vacuum at 60℃ to directly obtain white 

SiO2 spheres.

Synthesis of HPCS: 400 mg SiO2 spheres was dispersed in 80 ml methanol under vigorously 

stirring for 30 min, denoted as solution A. 0.56 g phosphonitrilic chloride trimer and 1.26 g 

4,4'-sulfonyldiphenol were dispersed in 40 ml methanol, denoted as solution B. Then, the 

solution B was slowly added dropwise to the solution A with a separating funnel. After 10 

min, 1 ml triethylamine was added in the above solution and the solution was stirred for 

another 6 hours. After that, the synthesized product was obtained by centrifugation, and 

washed with ethanol three times, and dried under vacuum at 60 ℃ overnight. The sample was 

calcined at 800 ℃, 900 ℃ and 1000 ℃ under the Ar atmosphere with a heating rate of 2 ℃ 

min-1, and then etched by NaOH aqueous solution. Finally, the black sample was washed 

several times with deionized water, and dried at 60 ℃ in vacuum to obtain the HPCS. 
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Synthesis of the contrast sample PCS-900 (Porous carbon spheres): 0.56 g 

phosphonitrilic chloride trimer and 1.26 g 4,4'-sulfonyldiphenol were dispersed in 40 ml 

methanol. After 10 min, 1 ml triethylamine was added in the above solution and it reacted for 

2 hours in an ultrasonic bath (150 W), the centrifugation as described above. The sample was 

calcined at 900 ℃ under the Ar atmosphere with a heating rate of 2 ℃ min-1.
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Electrochemical measurements

For the Zn-ion hybrid supercapacitor, the slurry was first prepared by dispersing the 

active materials, polyvinylidene difluoride (PVDF) and Super P in N-methyl-2-pyrrolidone 

(NMP) with a weight ratio of 8:1:1. The slurry was cast on the titanium foil (diameter = 1.2 

cm) and then dried in a vacuum at 70 ℃ for 24 hours (the active material loading of each 

electrode is 0.8-0.9 mg). The CR2032 coin-type cell was assembled with Zn metal foil as the 

negative electrode, Whatman glass fibers as the separator, and 3M ZnSO4 as the electrolyte. 

For a soft-pack ZIHCs device, this ZIHCs was sealed up in aluminum plastic films with a 

heat-sealing machine by employing the fabricated HPCS/Ti electrode (2*2 cm2, the load 

mass of active materials ≈ 0.8 mg cm−2) as the cathode, Zn foil (2*2 cm2) as the anode, 

Whatman glass fibers as the separator and 3M ZnSO4 as the electrolyte. In the three-electrode 

electrochemical measurements, Pt electrode and Calomel electrode were used as counter 

electrode and reference electrode. The Cyclic voltammetry (CV) curves and electrochemical 

impedance spectroscopy (EIS) were performed on a CHI660E electrochemical workstation. 

Electrochemical impedance spectroscopy was collected in a frequency range from 0.01 Hz to 

100 kHz. In the galvanostatic charge/discharge test, the ZIHCs was measured in the voltage 

range from 0.1 V to 1.7 V in a LAND multichannel battery test system (Wuhan Kingnuo 

Electronic Co., China). 
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Material characterization

The morphology and microstructure of the were observed through field emission 

scanning electron microscopy (FESEM, Hitachi SU-8020), and transmission electron 

microscopy (TEM, Talos-F200X). The X-ray diffraction was tested by Miniflex 600 powder 

X-ray diffractometer (Cu-Kα radiation, λ =1.54178 Å) and Raman spectra was measured 

using a LabRam HR800 spectrometer. Nitrogen sorption isotherm and the pore size 

distribution were conducted on the Intelligent Gravimetric Sorption Analyser (IGA100B). 

And X-ray photoelectron spectroscopy (XPS) was measured on ESCALAB 250Xi (Thermo 

Fisher). Thermogravimetric analysis (TGA, NETZSCH STA449F3) was employed to 

characterize the mass percentage of samples. 
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Calculation

The specific capacity (Cm, mAh g-1) for ZIHCs was calculated from the galvanometric 

charge-discharge curves using the following equations:

Cm = 2I ʃ V dt/3.6Vm                              (S1)

where I (A),  ʃVdt (Vs), V (V) and m (g) represent the discharge current (A), the integral area 

under charge/discharge curve, the voltage after ohmic drop, and the mass of active material in 

cathode, respectively.

The specific gravimetric capacitance (C, F g-1) for ZIHCs was calculated from the  

galvanometric charge-discharge curves using the following equations:

C = It /mV                                    (S2)

where t (s) is the discharge time.

Energy density and power density for the ZIHCs device were calculated based on the 

mass of active material of cathode using the following equations:

E =1/7.2 CV2                                  (S3)

P = 3600E /t                                   (S4)

Where C ( F g-1) is the specific gravimetric capacitance calculated above, E (Wh kg-1) is the 

energy density, P (W kg-1) is the power density, t (s) is the discharge time.
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Calculation of the b Value and Capacitive Contribution:

The measured current of CV curves could be separated into two types of charge storage 

for ZIHCs electrode materials, surface capacitive dominated processes and diffusion-

controlled processes. Generally, the charge storage kinetics mechanism can be investigated 

by the power-law relationship between the measured current density (i) and the sweep rate (v) 

based on the following formulas:

i = avb                                  (S5)

where a and b are variables, and the b value of 0.5 denotes a totally faradaic intercalation 

process and the b value of 1 indicates an ideally capacitive contribution process.

Quantitatively, the mixed behaviors can be further distinguished by separating the 

current response (i) at a specific potential (V) according to the following equations:

i(V) = icap + idiff = k1v + k2v1/2                     (S6)

Equation (S6) can be converted to Equation (S7):

i(V)/v1/2 = k1v1/2 +k2                         (S7)

where both k1 and k2 are constant values, k1v and k2v1/2 represent the contribution from 

surface capacitive behavior and contribution of diffusion-dominated reaction, respectively.
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Supporting Figure

Figure S1. Schematic diagram of the synthetic process of HPCS.
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Figure S2. SEM images of SiO2 spheres.

Figure S3. SEM images of (a-b) the contrast sample PCS-900, (c-d) the HPCS-800 and (e-f) 

the HPCS-1000.
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Figure S4. The HPCS-900 of (a) particle size distribution and (b) macroporous size 

distribution.
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Figure S5. TG curves of the polymer precursors in Ar atmosphere.

Figure S6. The pore size distributions.
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Figure S7. Electrochemical performance measured in a three-electrode system using 2 M 

ZnSO4 as electrolyte. The CV curves of HPCS-900 at different scan rates.
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Figure S8. Galvanostatic discharge–charge curves with different cycle numbers at 10 A g-1 of 
HPCS-900-based ZIHCs.
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Figure S9.  (a) The rate capability and (b) the Ragone plot of HPCS-900-based ZIHCs 
before and after 5000 cycles at 10A g-1.
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Figure S10. The elementals mapping images of the HPCS-900 cathodes at discharge-0.1V 

stages.
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Figure S11. (a) XPS survey spectra of HPCS-900 at the different charging/discharging states 

and (b) the high-resolution spectra of Zn 2p.
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Figure S12. The corresponding XPS high-resolution spectra at the different 

charging/discharging states of (a) C 1s, (b) O 1s, (c) N 1s, (d) P 2p and (e) S 2p.
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Figure S13. Cycling stability of soft-pack rechargeable ZIHCs device at 1 A g-1.
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Supporting Tables

Table S1. BET surface areas and pore volumes of electrode materials.

Sample S BET 
a

(m2 g-1)

V total b

(cm3 g-1)

V micro c

(cm3 g-1)

V meso d

(cm3 g-1)

S micro 
c

(m2 g-1)

HPCS-800 816.03 0.672 0.246 0.426 437.74

HPCS-900 1176.95 0.852 0.287 0.565 877.38

HPCS-1000 1249.30 0.950 0.284 0.666 862.13

PCS-900 391.42 0.156 0.144 0.012 360.45

a The specific surface area were calculated by using multiple BET method.

b The total pore volume were calculated at the relative pressure of 0.99.

c The pore volume and specific surface area of micropores were calculated by using t-plot 

method.

d The pore volume of mesopores and specific surface area were calculated by subtracting the 

volume of micropores from the total volume.
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Table S2. EDS results of materials (atomic concentration).

Sample C (%) N (%) O (%) P (%) S (%)

HPCS-800 66.69 10.98 16.12 3.81 2.40

HPCS-900 81.69 3.16 11.4 2.3 1.45

HPCS-1000 87.32 1.17 9.68 1.18 0.65

PCS-900 81.31 3.37 10.9 2.88 1.54
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Table S3. Summary of various recently reported Zn-based energy storage devices.

Energy storage 

system

Operating 

voltage

Capability Energy 

density

Cycling 

stability

Ref.

HPCS//3M

ZnSO4//Zn

0.1-1.7 V 253.6 F g-1

（0.1 A g-1）

90.17

Wh kg-1

95.24% after

30000 cycles

This 

work

Carbon sheets//2M

Zn(CF3SO3)2 //Zn

0.2-1.8 V 111 mAh g-1

(0.1 A g-1)

109.5 

Wh kg-1

92.7% after

50000 cycles

[1]

Oxygen-porous 

carbon//1M 

ZnSO4(gelatin )//Zn

0-1.8 V 132.7 mAh g-1 

(0.2 A g-1)

82.36 

Wh kg-1

87.6% after

10000 cycles

[2] 

PHCA//2M

ZnSO4//Zn

0-1.8 V 143.7 mAh g-1

(1 A g-1)

129.3 

Wh kg-1

92% after

10000 cycles

[3]

Corncob-carbon//2M

ZnSO4//Zn

0.2-1.8 V --- 94 

Wh kg-1

98% after

10000 cycles

[4]

Hollow carbon

sphere// hydrogel//Zn

0.15-

1.95 V

86.8 mAh g-1

(0.5 A g-1)

59.7 

Wh kg-1

98% after

15000 cycles

[5]

ZnxMnO2//2M ZnSO4

+0.4M MnSO4//ACC

0-2 V 145.5 F g-1

(2 mA cm-2)

--- 83.1% after 

5000 cycles

[6]

aMEGO//3M

Zn(CF3SO3)2 //Zn

0-1.9 V 166 F g-1

(0.5 A g-1)

83.2 

Wh kg-1

93% after

80000 cycles

[7]

AC//2M

ZnSO4//Zn

0-1.8 V 121 mAh g-1

(0.1 A g-1)

84 

Wh kg-1

91% after

10000 cycles

[8]
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AC//2M

ZnSO4//Zn

0.5-1.5 V 259.4 F g-1

(0.05 A g-1)

115.4 Wh 

cm-2

100% after

10000 cycles

[9]

DFs//1M

ZnSO4//Zn

0.2-1.8 V 246.1 F g-1 

(0.2 A g-1)

70.7 

Wh kg-1

89.9% after

10000 cycles

[10]
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