Supporting Information

Significantly enhancing solar fuel production rate and catalytic durability for photothermocatalytic CO₂ reduction by a synergetic effect between Pt and Co-doped Al₂O₃ nanosheets

Zhenghai Xie, Yuanzhi Li,* Zhiyuan Zhou, Qianqian Hu, Jichun Wu, Shaowen Wu

State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. China.

Experimental

The thermodynamic maximum η_{max} for the present photothermocatalytic CRM is determined by both solar absorption efficiency and Carnot efficiency in according to the following equation.^{46,50}

 $\eta_{\text{max}} = [1 - \sigma \times T_{\text{H}}^4 / (I_{\text{DNI}} \times \text{C})] \times [1 - T_{\text{L}} / T_{\text{H}}]$

Where σ is Stefan–Boltzmann constant, I_{DNI} is the direct normal solar irradiation (1 kWm⁻²), C is the solar flux concentration ratio, T_{L} and T_{H} are the low and high temperatures of the equal Carnot heat engine.

For the photothermocatalytic CRM on Pt/Co-Al₂O₃, C is equal to 343.0. Focused UV-Vis-IR irradiation causes the surface temperature of Pt/Co-Al₂O₃ to be quickly raised to an equilibrium temperature of 666 °C ($T_{\rm H}$ = 939.15 K) from room temperature ($T_{\rm L}$ = 298.15 K). Thus, $\eta_{\rm max}$ is calculated to be 59.5%.

Figure S1. EDS mappings of Al, O, Co, and Pt for Pt/Co-Al₂O₃.

Figure S2. TEM images with lower and higher resolution (A, B), the size distribution of Pt nanoparticles (C), HRTEM image (D) of Pt/Al₂O₃.

Figure S3. N_2 adsorption-desorption isotherms (A) and BJH adsorption pore size distribution (B) of Pt/Co-Al₂O₃.

Figure S4. N_2 adsorption-desorption isotherms (A) and BJH adsorption pore size distribution (B) of Pt/Al_2O_3 .

Figure S5. Time course of reaction rates for photothermocatalytic CRM on Pt/Al_2O_3 under focused UV-vis-IR irradiation (A). TG-MS profiles of the used Pt/Al_2O_3 sample after 5 h photothermocatalytic durability test (B).

Figure S6. TEM (A) and HRTEM (B) images of the used $Pt/Co-Al_2O_3$ sample after 50 h photothermocatalytic test.

Figure S7. TEM (A) and HRTM (B) images of the used Pt/Al_2O_3 sample after 5 h photothermocatalytic durability test.