Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary information

Fig. S1 CV of Ni-NTNW and NiCo-LDH@Ni-NTNW electrodes at scan rates of (a) 20 mV/s and (b) 50 mV/s.

Fig. S2 CV curves of Ni-NTNW at different scan rates between 2-100 mV/s.

Fig. S3 The oxidation and reduction peak currents as a function of $v^{1/2}$ of Ni-NTNW electrode.

Fig. S4 SEM cross-sectional micrograph of the Ni-NTNW based electrode (with 400 nm nanotubes).

Fig. S5 Areal capacities of Ni-NTNW and NiCo-LDH@Ni-NTNW electrodes estimated from CV curves at different scan rates.

Fig. S6 GCD curves for Ni-NTNW electrode at different current densities between 0.2 and 50 mA/cm².

Fig. S7 GCD curves for NiCo-LDH@Ni-NTNW electrode at different current densities between 0.2 and 50 mA/cm2.

Fig. S8 GCD curves of Ni-NTNW and NiCo-LDH@Ni-NTNW electrodes at 0.5 mA/cm².

Fig. S9 Cycling stability of the Ni-NTNW electrode at current density of 10 mA/cm².

Fig. S10 SEM and EDX of (a) Ni-NTNW and (b) NiCo-LDH@Ni-NTNW electrodes after cycling test.

Fig. S11 CV curves of AC electrode at different scan rates between 2-100 mV/s.

Fig. S12 *b*-Values for the assembled HSC at different voltages (Inset: the plots of log *I* as a function of log *v* at different stages of the CV potential window).

Fig. 13 Areal capacitance the HSC device at different current densities.

Table S1. Performance comparison of NiCo-LDH@Ni-NTNW electrode with recently reported

 NiCo-based battery-type electrodes in three-electrode setup.

Electroactive	Current	Current	Flootrolyto	Conosity	Pof	
material	collector	density	Electrolyte	Capacity	Nel.	
NiCoP/Ti ₂ C ₂ MXene	3D printed	_	2 М КОН	68.5 C/cm ³	[1]	
	CNT based ink		2 101 11011	10 C/cm ²	[1]	
NiCo-LDH	Ni-coated	1 A/g	1 M KOH	420 C/g	[2]	
	textile	Ū.		Ū.		
Ag@NiCo ₂ S4	WC 1 mA/cm^2		6 M KOH	341 C/g	[3]	
				3.04 C/cm^2		
Co(OH) ₂	CW	1 mA/cm ²	2 M KOH	261 C/g	[4]	
· · · · ·				1.48 C/cm^2		
NiO/ZnO	Ni foam	1.3 A/g	3 M KOH	248.5 C/g	[5]	
NiCo-LDH/Co ₉ S ₈	Ni foam	4 A/g	1 M KOH	~742 C/g *	[6]	
Co-doped Ni ₁₁ (HPO ₃) ₈ (OH) ₆	Ni foam	0.5 A/g	3 M KOH	300.6 C/g	[7]	
NiCo ₂ S ₄	Ni foam	2 A/g	6 M KOH	508 C/g	[8]	
2D/2D NiCo-	_	0 5 A/g	2 М КОН	413 6 C/g	[9]	
MOF@GO		0.5 1 4 5	2 10 1011	413.0 0/6		
Honeycomb	Cellulose paper	$2 \text{ m} \text{A}/\text{cm}^2$	6 М КОН	479 C/g	[10]	
Co@Co(OH) ₂ sheets	Centrose paper			0.321 C/cm ²	[10]	
Ni-Co LDH	Carbon	0.02	1 M NaOH	551.2 C/g	[11]	
nanorods	nanofiber	mA/cm ²	1 101 10011	0.011 C/cm ²	[11]	
mesoporous		0.33		16.2C/cm^3		
network-like	Carbon cloth	mA/cm^2	3 M KOH	0.29 C/cm^2	[12]	
NiCo ₂ O ₄						
NiCo-LDH@Ni-	Integrated Ni			126.4 C/cm^3	This	
NTNW electrode	supporting	0.2 mA/cm^2	1 M KOH	601.0 C/g	work	
	layer			0.252 C/cm ²	WOIN	

* Estimated from specific capacitance figure

WC: wood-derived carbon

CW: carbonized wood

NGP: Ni/graphite/paper

Positive electrode	Negative electrode	Current density (mA/cm ²)	Gravimetric capacitance (F/g)	Areal capacitance (F/cm ²)	Volumetric capacitance (F/cm ³)	Capacitance Retention/ Cycles	Voltage (V)	Energy Density (mWh/cm ³)	Ref.
Mesoporous network-like NiCo2O4	Mesoporous network-like NiCo ₂ O4	0.33	269	0.09	5	89% 4000	1	0.69 *	[12]
CuCo ₂ O ₄	AC	1	-	0.262 **	2.62 **	82% 3000	1.5	0.81	[13]
MnO ₂ /TCC	TCC	2	45.3	1.5	16.8	96% 20000	2	9.4	[14]
NiCoP/Ti ₃ C ₂ MXene	AC	2	-	3.29	10.97	87.5% 5000	1.4	2.2	[1]
NiCo-LDH@Ni- coated textile	NiCo- LDH@Ni- coated textile	-	-	-	-	-	0.65	1.25	[2]
Co_9S_8	$Co_3O_4@RuO_2$	2.5	-	0.34	4.28	90.2% 2000	1.6	1.44	[15]
WC@Ag@ NiCo ₂ S4	WC@Ag	1	40.2	1.87	11.3	87.7% 10000	1.5	3.93	[3]
Co(OH) ₂ @CW	CW	1	34.8	2.2	14.19	85% 10000	1.5	4.45	[4]

Table S2. Comparison of electrochemical performance of our NiCo-LDH@Ni-NTNW//AC hybrid supercapacitor with state-of-the-art

 symmetric/asymmetric and hybrid supercapacitors with high volumetric capacitance and energy density.

Ni(OH) ₂	Mn ₃ O ₄	1	-	-	2.07	83.3% 12000	1.3	0.35	[16]
GF/NiCo ₂ S ₄	GF	0.5	-	0.568	39.4	92% 2000	1.5	12.3	[17]
NiCo-LDH@Ni- NTNW	AC	1	142.6	0.69	76.7	124% 20000	1.6	14.8	This work

* calculated based on the mass loading

** estimated from specific capacitance figure

TCC: porous carbon cloth

GF: graphene fiber

Device composition	Current density	Cycles	Retention	Ref.
CNTs/NiCo LDH //AC	5 A/g	10000	99.4 %	[18]
PPNF@Co-Ni MOF//CNF-G	10 A/g	10000	100 %	[19]
Layered CuCo hydroxide//ACC	8.33 mA/cm ²	3500	96.55%	[20]
NiCoP/Ti ₃ C ₂ MXene//AC	12 mA/cm^2	5000	87.5%	[1]
WC@Ag@NiCo ₂ S ₄ // WC@Ag	50 mA/cm ²	10000	87.7%	[3]
Co(OH)2@CW//CW	50 mA/cm^2	10000	85%	[4]
Ni(OH) ₂ //Mn ₃ O ₄	-	12000	83.3%	[16]
NiCo-LDH//CNT	4 A/g	5000	103.9 %	[21]
NiCo-LDH//graphene	-	700	110 %	[22]
NiCo-LDH@Ni- NTNW//AC	20 mA/cm ²	20000	124 %	This work

Table S3. Cyclic stability comparison of our NiCo-LDH@Ni-NTNW//AC hybrid supercapacitor

 with recently reported asymmetric and hybrid supercapacitors with high-capacitance retention.

AC: activated carbon

ACC: activated carbon cloth

References

- L. Yu, W. Li, C. Wei, Q. Yang, Y. Shao, J. Sun, 3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density, Nano-Micro Lett. 12 (2020) 1–13. https://doi.org/10.1007/s40820-020-00483-5.
- Y.M. Jeong, I. Son, S.H. Baek, Binder–free of NiCo–layered double hydroxides on Ni– coated textile for wearable and flexible supercapacitors, Appl. Surf. Sci. 467–468 (2019) 963–967. https://doi.org/10.1016/j.apsusc.2018.10.252.
- [3] F. Wang, X. Liu, G. Duan, H. Yang, J.Y. Cheong, J. Lee, J. Ahn, Q. Zhang, S. He, J. Han,

Y. Zhao, I.D. Kim, S. Jiang, Wood-Derived, Conductivity and Hierarchical Pore Integrated Thick Electrode Enabling High Areal/Volumetric Energy Density for Hybrid Capacitors, Small. 17 (2021) 1–10. https://doi.org/10.1002/smll.202102532.

- [4] Y. Wang, X. Lin, T. Liu, H. Chen, S. Chen, Z. Jiang, J. Liu, J. Huang, M. Liu, Wood-Derived Hierarchically Porous Electrodes for High-Performance All-Solid-State Supercapacitors, Adv. Funct. Mater. 28 (2018). https://doi.org/10.1002/ADFM.201806207.
- [5] G.-C. Li, P.-F. Liu, R. Liu, M. Liu, K. Tao, S.-R. Zhu, M.-K. Wu, F.-Y. Yi, L. Han, MOFderived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors, Dalt. Trans. 45 (2016) 13311–13316. https://doi.org/10.1039/C6DT01791F.
- [6] G. Yilmaz, K.M. Yam, C. Zhang, H.J. Fan, G.W. Ho, In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance, Adv. Mater. 29 (2017). https://doi.org/10.1002/ADMA.201606814.
- B. Li, Y. Shi, K. Huang, M. Zhao, J. Qiu, H. Xue, H. Pang, Cobalt-Doped Nickel Phosphite for High Performance of Electrochemical Energy Storage, Small. 14 (2018). https://doi.org/10.1002/SMLL.201703811.
- [8] B.Y. Guan, L. Yu, X. Wang, S. Song, X.W.D. Lou, Formation of Onion-Like NiCo2S4 Particles via Sequential Ion-Exchange for Hybrid Supercapacitors, Adv. Mater. 29 (2017). https://doi.org/10.1002/ADMA.201605051.
- S. Li, C. Shi, Y. Pan, Y. Wang, 2D/2D NiCo-MOFs/GO hybrid nanosheets for highperformance asymmetrical supercapacitor, Diam. Relat. Mater. 115 (2021) 108358. https://doi.org/10.1016/j.diamond.2021.108358.
- [10] C. Wan, Y. Jiao, D. Liang, Y. Wu, J. Li, A Geologic Architecture System-Inspired Micro-/Nano-Heterostructure Design for High-Performance Energy Storage, Adv. Energy Mater. 8 (2018). https://doi.org/10.1002/AENM.201802388.
- [11] F. Lai, Y. Huang, Y.E. Miao, T. Liu, Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors, Electrochim. Acta. 174 (2015)

456–463. https://doi.org/10.1016/J.ELECTACTA.2015.06.031.

- [12] S. Gao, F. Liao, S. Ma, L. Zhu, M. Shao, Network-like mesoporous NiCo2O4 grown on carbon cloth for high-performance pseudocapacitors, J. Mater. Chem. A. 3 (2015) 16520– 16527. https://doi.org/10.1039/C5TA02876K.
- Q. Wang, D. Chen, D. Zhang, Electrospun porous CuCo2O4 nanowire network electrode for asymmetric supercapacitors, RSC Adv. 5 (2015) 96448–96454. https://doi.org/10.1039/C5RA21170K.
- H. Wang, C. Xu, Y. Chen, Y. Wang, MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density, Energy Storage Mater. 8 (2017) 127–133. https://doi.org/10.1016/J.ENSM.2017.05.007.
- [15] J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen, G. Shen, Flexible Asymmetric Supercapacitors Based upon Co9S8 Nanorod//Co3O4@RuO2 Nanosheet Arrays on Carbon Cloth, ACS Nano. 7 (2013) 5453–5462. https://doi.org/10.1021/NN401450S.
- [16] J.-X. Feng, S.-H. Ye, X.-F. Lu, Y.-X. Tong, G.-R. Li, Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device, ACS Appl. Mater. Interfaces. 7 (2015) 11444–11451. https://doi.org/10.1021/ACSAMI.5B02157.
- [17] W. Cai, T. Lai, J. Lai, H. Xie, L. Ouyang, J. Ye, C. Yu, Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density, Sci. Reports 2016 61. 6 (2016) 1–9. https://doi.org/10.1038/srep26890.
- [18] M. Huang, Y. Wang, J. Chen, D. He, J. He, Y. Wang, Biomimetic design of Ni Co LDH composites linked by carbon nanotubes with plant conduction tissues characteristic for hybrid supercapacitors, Electrochim. Acta. 381 (2021) 138289. https://doi.org/10.1016/J.ELECTACTA.2021.138289.
- [19] D. Tian, N. Song, M. Zhong, X. Lu, C. Wang, Bimetallic MOF Nanosheets Decorated on Electrospun Nanofibers for High-Performance Asymmetric Supercapacitors, (2019). https://doi.org/10.1021/acsami.9b16420.

- [20] A.D. Deshmukh, A.R. Urade, A.P. Nanwani, K.A. Deshmukh, D.R. Peshwe, P. Sivaraman, S.J. Dhoble, B.K. Gupta, Two-Dimensional Double Hydroxide Nanoarchitecture with High Areal and Volumetric Capacitance, ACS Omega. 3 (2018) 7204–7213. https://doi.org/10.1021/acsomega.8b00596.
- [21] R. Ramachandran, Y. Lan, Z.X. Xu, F. Wang, Construction of NiCo-Layered Double Hydroxide Microspheres from Ni-MOFs for High-Performance Asymmetric Supercapacitors, ACS Appl. Energy Mater. 3 (2020) 6633–6643. https://doi.org/10.1021/acsaem.0c00790.
- [22] X. Sun, G. Wang, H. Sun, F. Lu, M. Yu, J. Lian, Morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system, J. Power Sources. 238 (2013) 150–156. https://doi.org/10.1016/J.JPOWSOUR.2013.03.069.